Progress In Electromagnetics Research B
ISSN: 1937-6472
Home | Search | Notification | Authors | Submission | PIERS Home | EM Academy
Home > Vol. 34 > pp. 205-223


By L. La Spada, F. Bilotti, and L. Vegni

Full Article PDF (350 KB)

In this paper, we propose the design of high sensitivity and selectivity metamaterial-based biosensors operating in the THz regime. The proposed sensors consist of planar array of resonant metallic structures, whose frequency response is modified through the variation of the surrounding dielectric environment. We consider different resonator geometries, such as the squared, circular, asymmetrical, and omega ones, and the analysis of the biosensors is conducted through proper equivalent quasi-static analytical circuit models. The metallic particles are assumed deposited on a glass substrate through proper titanium adhesion layers. Exploiting the proposed analytical model, which is verified through the comparison to full-wave numerical simulations, we study the biosensor resonance frequencies as a function of the geometric parameters of the individual inclusions. Finally, we optimize the structure in order to obtain high sensitivity and selectivity performances. The numerical results show that the proposed structures can be successfully applied as biosensors working in the THz region.

L. La Spada, F. Bilotti, and L. Vegni, "Metamaterial-Based Sensor Design Working in Infrared Frequency Range," Progress In Electromagnetics Research B, Vol. 34, 205-223, 2011.

1. Vo-Dinh, T. and L. Allain, "Biosensors for medical applications," Biomedical Photonics Handbook, CRC Press, 2003.

2. Hu, M., J. Chen, Z. Y. Li, L. Au, G. V. Hartland, X. Li, M. Marquez, and Y. Xia, "Gold nanostructures: Engineering their plasmonic properties for biomedical applications," Chem. Soc. Rev., Vol. 35, 1084-1094, 2006.

3. Salamon, Z., H. A. Macleod, and G. Tollin, "Surface plasmon resonance spectroscopy as a tool for investigating the biochemical and biophysical properties of membrane protein systems. I. Theoretical principles," Biochim. Biophys. Acta, Vol. 1331, 117-129, 1997.

4. Lillie, J. J., M. A. Thomas, N. M. Jokerst, S. E. Ralph, K. A. Dennis, and C. L. Handerson, "Multimode interferometric sensors on silicon optimized for fully integrated complementary metal-oxide-semiconductor chemical-biological sensor systems," J. Opt. Soc. Am. B, Vol. 23, 642-651, 2006.

5. Luo, D. H., R. A. Levy, Y. F. Hor, J. F. Federici, and R. M. Pafchek, "An integrated photonic sensor for in situ monitoring of hazardous organics," Sens. Actuators B, Vol. 92, 121-126, 2003.

6. Xia, F., L. Sekaric, and Y. A. Vlasov, "Mode conversion losses in silicon-on-insulator photonic wire based racetrack resonators," Opt. Expr., Vol. 14, 3872-3886, 2006.

7. Chao, C. Y. and L. J. Guo, "Biochemical sensors based on polymer microrings with sharp asymmetrical resonance," Appl. Phys. Lett., Vol. 83, 1527-1529, 2003.

8. Yalçin, A., K. C. Popat, J. C. Aldridge, T. A. Desai, J. Hryniewicz, N. Chbouki, B. E. Little, O. King, V. Van, S. Chu, D. Gill, M. Anthes-Washburn, M. Selim Unlu, and B. B. Goldberg, "Optical sensing of biomelecules using microring resonators," IEEE J. Selected Topics in Quantum Electronics, Vol. 12, 148-155, 2006.

9. Wongkasem, N., A. Akyurtlu, J. Li, A. Tibolt, Z. Kang, and W. D. Goodhue, "Novel broadband terahertz negative refractive index metamaterials: Analysis and experiment," Progress In Electromagnetics Research, Vol. 64, 205-218, 2006.

10. Ishimaru, A., S. Jaruwatanadilok, and Y. Kuga, "Generalized surface plasmon resonance sensors using metamaterials and negative index materials," Progress In Electromagnetics Research, Vol. 51, 139-152, 2005.

11. Cai, M. and E. P. Li, "A novel terahertz sensing device comprising of a parabolic reflective surface and a bi-conical structure," Progress In Electromagnetics Research, Vol. 97, 61-73, 2009.

12. Bilotti, F., A. Toscano, L. Vegni, K. Aydin, K. B. Alici, and E. Ozbay, "Equivalent-circuit models for the design of metamaterials based on artificial magnetic inclusions," IEEE Trans. Microw. Theory Tech., Vol. 55, 2865-2873, 2007.

13. Bilotti, F., A. Toscano, and L. Vegni, "Design of spiral and multiple split-ring resonators for the realization of miniaturized metamaterial samples," IEEE Trans. Antennas Propag., Vol. 55, 2258-2267, 2007.

14. Tretyakov, S. A., "On geometrical scaling of split-ring and double-bar resonators at optical frequencies," Metamaterials, Vol. 1, 140-143, 2007.

15. Buoeno, M. A. and A. K. T. Assis, "A new method for inductance calculations," J. Phys. D: Appl. Phys., Vol. 28, 1802-1806, 1995.

16. Delgado, V., O. Sydoruk, E. Tatartschuk, R. Marqués, M. J. Freire, and L. Jelinek, "Analytical circuit model for split ring resonators in the far infrared and optical frequency range," Metamaterials, Vol. 3, 57-62, 2009.

17. Pendry, J. B., A. J. Holden, D. J. Robbins, and W. J. Stewart, "Magnetism from conductors and enhanced nonlinear phenomena," IEEE Trans. Microw. Theory Tech., Vol. 47, 2075-2081, 1999.

18. Tretyakov, S. A., F. Mariotte, C. R. Simovski, T. G. Kharina, and J. P. Heliot, "Analytical antenna model for chiral scatterers: Comparison with numerical and experimental data," IEEE Trans. Antennas Propag., Vol. 44, 1006-1014, 1996.

19. Simovski, C. R., S. A. Tretyakov, A. A. Sochava, B. Sauviac, F. Mariotte, and T. G. Kharina, "Antenna model for conductive omega particles," Journal of Electromagnetic Waves and Applications, Vol. 11, No. 11, 1509-1530, 1997.

20. Casse, B. D. F., H. O. Moser, O. Wilhelmi, and B. T. Saw, "Micro- and nano-fabrication of electromagnetic metamaterials for the terahertz range," Proceedings of the ICMAT 2005 Symposium, Vol. 18, No. 25, 2005.

21. CST Computer Simulation Technology, www.cst.com.

22. Chen, C.-Y., I.-W. Un, N.-H. Tai, and T.-J. Ye, "Asymmetric coupling between subradiant and superradiant plasmonic resonances and its enhanced sensing performance," Opt. Expr., Vol. 17, 15372-15380, 2009.

© Copyright 2010 EMW Publishing. All Rights Reserved