1. Chen, A. H.-D. and D. T. Cheng, "Heritage and early history of the boundary element method," Engineering Analysis with Boundary Elements, Vol. 29, 268, 2005.
doi:10.1016/j.enganabound.2004.12.001 Google Scholar
2. Hall, W. S., The Boundary Element Method, Kluwer Academic Publishers, The Netherlands, 1994.
doi:10.1007/978-94-011-0784-6
3. Cartwright, D. J., Underlying Principles of the Boundary Element Method, WIT Press, Boston, 2001.
4. Lothar, G., M. Kogl, and M. Wagner, Boundary Element Methods for Engineers and Scientists, 1st edition, Springer-Verlag, Berlin Heidelberg, 2003.
5. Brebbia, C. A. and R. Butterfield, Boundary Element Techniques in Engineering, 1st edition, Butterworth Publishers Inc., 1980.
6. Brebbia, C. A. and S. Walker, "Formal equivalence of direct and indirect boundary element methods," Appl. Math. Modelling, Vol. 2, 132-134, Jun. 1978.
doi:10.1016/0307-904X(78)90052-5 Google Scholar
7. Lazic, P., H. Stefancic, and H. Abraham, "The Robin Hood method - A novel numerical method for electrostatic problems based on a non-local charge transfer," J. Comput. Phys., Vol. 213, 117, 2006.
doi:10.1016/j.jcp.2005.08.006 Google Scholar
8. Lazic, P., H. Stefancic, and H. Abraham, "The robin hood method a new view on differential equations," Engineering Analysis with Boundary Elements, Vol. 32, 76, 2008.
doi:10.1016/j.enganabound.2007.06.004 Google Scholar
9. Szilagyi, M., Electron and Ion Optics, Plenum Press, New York, 1988.
doi:10.1007/978-1-4613-0923-9
10. Poljak, D. and C. A. Brebbia, "Boundary Element Methods for Electrical Engineers," 1st edition, WIT Press, Boston, 2005. Google Scholar
11. Jackson, J. D., "Classical Electrodynamics," 2nd edition, John Wiley and Sons, New York, 1975. Google Scholar
12. Rao, S., T. Sarkar, and R. F. Harrington, "The electrostatic field of conducting bodies in multiple dielectric media," IEEE Transactions on Microwave Theory and Techniques, Vol. 32, 1441, 1974. Google Scholar
13. Garcia de Abajo, F. J. and A. Howie, "Retarded field calculation of electron energy loss in inhomogeneous dielectrics," Phys. Rev. B, Vol. 65, 115418, 2002.
doi:10.1103/PhysRevB.65.115418 Google Scholar
14. , , , http://www.artcalc.com/.
15. Anita, H. M., Numerical Methods for Scientists and Engineers, Birkhauser verlag, Basel, Boston, Berlin, 2002.
16. Strang, G., Computational Science and Engineering, Wellesley-Cambridge Press, Wellesley, MA, 2007.
17. Khronos Open CL Working Group, The OpenCL Specification, , version 1.0.29, http://www.khronos.org/registry/cl/specs/opencl-1.0.29.pdf., 2008.
18. Geuzaine, C. and J.-F. Remacle, "Gmsh: A finite element mesh generator with built-in pre- and post-processing facilities,", http://www.geuz.org/gmsh/, 1996. Google Scholar
19. Angrik, J., et al. "The KATRIN Design Report,", FZK Scientific Report 7090, www-ik.fzk.de/tritium/publications/documents/De signReport2004 , 12Jan2005.pdf, 2005. Google Scholar
20. Weinheimer, C., et al. "High precision measurement of the tritium β spectrum near its endpoint and upper limit on the neutrino mass," Phys. Lett., Vol. B460, 219, 1999.
doi:10.1088/0022-3735/13/1/018 Google Scholar
21. Lobashev, V. M., et al. "Direct search for mass of neutrino and anomaly in the tritium beta-spectrum," Phys. Lett., Vol. B460, 227, 1999.
doi:10.1039/b711486a Google Scholar
22. Beamson, G., et al. "The collimating and magnifying properties of a superconducting field photoelectron spectrometer," Journal of Physics E, Vol. 13, 64, 1980.
doi:10.1116/1.3531929 Google Scholar
23. Myroshnychenko, V., J. Rodriguez-Fernandez, I. Pastoriza-Santos, A. M. Funston, C. Novo, P. Mulvaney, L. M. Liz-Marzan, and F. J. Garcia de Abajo, "Modelling the optical response of gold nanoparticles," Chem. Soc. Rev., Vol. 37, 1792, 2008.
doi:10.1103/PhysRevB.65.115418 Google Scholar
24. Persaud, A., I. Allen, M. R. Dickinson, and T. Schenkel, "Development of a compact neutron source based on field ionization processes," J. Vac. Sci. Technol. B, Vol. 29, 02B107, 2011.
doi:10.1116/1.588345 Google Scholar
25. Garcia de Abajo, F. J. and A. Howie, "Retarded field calculation of electron energy loss in inhomogeneous dielectrics," Phys. Rev. B, Vol. 65, 115418, 2002.
doi:10.1038/nmat2944 Google Scholar
26. Jensen, K. L., "Improved Fowler-Nordheim equation for field emission from semiconductors," J. Vac. Sci. Technol. B, Vol. 13, 516, 1995.
doi:10.1038/nnano.2008.174 Google Scholar
27. Banan Sadeghian, R. and M. Saif Islam, "Ultralow-voltage field-ionization discharge on whiskered silicon nanowires for gas-sensing applications," Nat. Mater., Vol. 10, 135, 2011.
doi: --- Either ISSN/ISBN or Series/Volume title must be supplied. Google Scholar
28. Keefer, E. W., B. R. Botterman, M. I. Romero, A. F. Rossi, and G. W. Gross, "Carbon nanotube coating improves neuronal recordings," Nat. Nano, Vol. 3, 434, 2008.
doi: --- Either ISSN/ISBN or Series/Volume title must be supplied. Google Scholar
29. Bonard, J.-M., N. Weiss, H. Kind, T. Stockli, L. Forro, K. Kern, and A. Chatelain, "Tuning the field emission properties of patterned carbon nanotube films," Adv. Mater., Vol. 13, 184, 2001. Google Scholar
30. Wang, Z. and N. Koratkar, "Suppressing electrostatic screening in nanostructured electrode arrays," J. Nanosci. Nanotechno., Vol. 6, 1979, 2006.
doi:10.1098/rspa.1928.0091 Google Scholar
31. Lin, M. C.-C., H. J. Lai, M. S. Lai, M. H. Yang, and A. K. Li, "Characteristic of field emission from carbon nanotubes synthesized from different sources," Mater. Phys. Mech., Vol. 4, 138, 2001.
doi:10.1146/annurev.anchem.1.031207.112814 Google Scholar
32. Fowler, H. and L. Nordheim, "Electron emission in intense electric fields," Proc. R. Soc. A, Vol. 119, 173, 1928.
doi:10.1021/jp106245a Google Scholar
33. Stiles, P. L., J. A. Dieringer, N. C. Shah, and R. P. Van Duyne, "Surface-enhanced raman spectroscopy," Annu. Rev. Anal. Chem., Vol. 1, 601, 2008.
doi:10.1038/nature07378 Google Scholar
34. Jin, M., V. Pully, C. Otto, A. van den Berg, and E. T. Carlen, "High-density periodic arrays of self-aligned subwavelength nanopyramids for surface-enhanced raman spectroscopy," J. Phys. Chem. C, Vol. 114, 21953, 2010.
doi:10.1209/0295-5075/91/46003 Google Scholar
35. Camara, C. G., J. V. Escobar, J. R. Hird, and S. J. Putterman, "Correlation between nanosecond X-ray flashes and stickslip friction in peeling tape," Nature, Vol. 455, 1089, 2008. Google Scholar
36. Lazic, P. and B. N. J. Persson, "Surface-roughnessinduced electric-field enhancement and triboluminescence," Europhys. Lett., Vol. 91, 46003, 2010. Google Scholar
37. Sivula, K., F. Le Formal, and M. Gratzel, "Solar water splitting: Progress using hematite (α-Fe2O3) photoelectrodes," Chem. Sus. Chem., Vol. 4, 432, 2011. Google Scholar
38. Birtles, A. B., B. J. Mayo, and A. W. Bennett, "Defocussing of charged particle beams transmitted through meshes," PROC. IEE, Vol. 120, No. 2, 213-220, Feb. 1973. Google Scholar
39. Hudson, R. G. and J. Lipka, A Table of Integrals, Stanhope Press, Boston, 1917.
40. Bowman, F. and F. A. Gerard, Higher Calculus, Cambridge University Press, 1967.