PIER B
 
Progress In Electromagnetics Research B
ISSN: 1937-6472
Home | Search | Notification | Authors | Submission | PIERS Home | EM Academy
Home > Vol. 39 > pp. 1-37

SOLVING FOR MICRO- AND MACRO-SCALE ELECTROSTATIC CONFIGURATIONS USING THE ROBIN HOOD ALGORITHM

By J. A. Formaggio, P. Lazic, T. J. Corona, H. Stefancic, H. Abraham, and F. Gluck

Full Article PDF (2,262 KB)

Abstract:
We present a novel technique by which highly-segmented electrostatic configurations can be solved. The Robin Hood method is a matrix-inversion algorithm optimized for solving high density boundary element method (BEM) problems. We illustrate the capabilities of this solver by studying two distinct geometry scales: (a) the electrostatic potential of a large volume beta-detector and (b) the field enhancement present at surface of electrode nano-structures. Geometries with elements numbering in the O(105) are easily modeled and solved without loss of accuracy. The technique has recently been expanded so as to include dielectrics and magnetic materials.

Citation:
J. A. Formaggio, P. Lazic, T. J. Corona, H. Stefancic, H. Abraham, and F. Gluck, "Solving for Micro- and Macro-Scale Electrostatic Configurations Using the Robin Hood Algorithm," Progress In Electromagnetics Research B, Vol. 39, 1-37, 2012.
doi:10.2528/PIERB11112106

References:
1. Chen, A. H.-D. and D. T. Cheng, "Heritage and early history of the boundary element method," Engineering Analysis with Boundary Elements, Vol. 29, 268, 2005.
doi:10.1016/j.enganabound.2004.12.001

2. Hall, W. S., The Boundary Element Method, Kluwer Academic Publishers, The Netherlands, 1994.
doi:10.1007/978-94-011-0784-6

3. Cartwright, D. J., Underlying Principles of the Boundary Element Method, WIT Press, Boston, 2001.

4. Lothar, G., M. Kogl, and M. Wagner, Boundary Element Methods for Engineers and Scientists, 1st edition, Springer-Verlag, Berlin Heidelberg, 2003.

5. Brebbia, C. A. and R. Butterfield, Boundary Element Techniques in Engineering, 1st edition, Butterworth Publishers Inc., 1980.

6. Brebbia, C. A. and S. Walker, "Formal equivalence of direct and indirect boundary element methods," Appl. Math. Modelling, Vol. 2, 132-134, Jun. 1978.
doi:10.1016/0307-904X(78)90052-5

7. Lazic, P., H. Stefancic, and H. Abraham, "The Robin Hood method - A novel numerical method for electrostatic problems based on a non-local charge transfer," J. Comput. Phys., Vol. 213, 117, 2006.
doi:10.1016/j.jcp.2005.08.006

8. Lazic, P., H. Stefancic, and H. Abraham, "The robin hood method a new view on differential equations," Engineering Analysis with Boundary Elements, Vol. 32, 76, 2008.
doi:10.1016/j.enganabound.2007.06.004

9. Szilagyi, M., Electron and Ion Optics, Plenum Press, New York, 1988.
doi:10.1007/978-1-4613-0923-9

10. Poljak, D. and C. A. Brebbia, "Boundary Element Methods for Electrical Engineers," 1st edition, WIT Press, Boston, 2005.

11. Jackson, J. D., "Classical Electrodynamics," 2nd edition, John Wiley and Sons, New York, 1975.

12. Rao, S., T. Sarkar, and R. F. Harrington, "The electrostatic field of conducting bodies in multiple dielectric media," IEEE Transactions on Microwave Theory and Techniques, Vol. 32, 1441, 1974.

13. Garcia de Abajo, F. J. and A. Howie, "Retarded field calculation of electron energy loss in inhomogeneous dielectrics," Phys. Rev. B, Vol. 65, 115418, 2002.
doi:10.1103/PhysRevB.65.115418

14. , , , http://www.artcalc.com/.

15. Anita, H. M., Numerical Methods for Scientists and Engineers, Birkhauser verlag, Basel, Boston, Berlin, 2002.

16. Strang, G., Computational Science and Engineering, Wellesley-Cambridge Press, Wellesley, MA, 2007.

17. Khronos Open CL Working Group, The OpenCL Specification, , version 1.0.29, http://www.khronos.org/registry/cl/specs/opencl-1.0.29.pdf., 2008.

18. Geuzaine, C. and J.-F. Remacle, "Gmsh: A finite element mesh generator with built-in pre- and post-processing facilities,", http://www.geuz.org/gmsh/, 1996.

19. Angrik, J., et al., "The KATRIN Design Report,", FZK Scientific Report 7090, www-ik.fzk.de/tritium/publications/documents/De signReport2004 , 12Jan2005.pdf, 2005.

20. Weinheimer, C., et al., "High precision measurement of the tritium β spectrum near its endpoint and upper limit on the neutrino mass," Phys. Lett., Vol. B460, 219, 1999.
doi:10.1088/0022-3735/13/1/018

21. Lobashev, V. M., et al., "Direct search for mass of neutrino and anomaly in the tritium beta-spectrum," Phys. Lett., Vol. B460, 227, 1999.
doi:10.1039/b711486a

22. Beamson, G., et al., "The collimating and magnifying properties of a superconducting field photoelectron spectrometer," Journal of Physics E, Vol. 13, 64, 1980.
doi:10.1116/1.3531929

23. Myroshnychenko, V., J. Rodriguez-Fernandez, I. Pastoriza-Santos, A. M. Funston, C. Novo, P. Mulvaney, L. M. Liz-Marzan, and F. J. Garcia de Abajo, "Modelling the optical response of gold nanoparticles," Chem. Soc. Rev., Vol. 37, 1792, 2008.
doi:10.1103/PhysRevB.65.115418

24. Persaud, A., I. Allen, M. R. Dickinson, and T. Schenkel, "Development of a compact neutron source based on field ionization processes," J. Vac. Sci. Technol. B, Vol. 29, 02B107, 2011.
doi:10.1116/1.588345

25. Garcia de Abajo, F. J. and A. Howie, "Retarded field calculation of electron energy loss in inhomogeneous dielectrics," Phys. Rev. B, Vol. 65, 115418, 2002.
doi:10.1038/nmat2944

26. Jensen, K. L., "Improved Fowler-Nordheim equation for field emission from semiconductors," J. Vac. Sci. Technol. B, Vol. 13, 516, 1995.
doi:10.1038/nnano.2008.174

27. Banan Sadeghian, R. and M. Saif Islam, "Ultralow-voltage field-ionization discharge on whiskered silicon nanowires for gas-sensing applications," Nat. Mater., Vol. 10, 135, 2011.
doi: --- Either ISSN/ISBN or Series/Volume title must be supplied.

28. Keefer, E. W., B. R. Botterman, M. I. Romero, A. F. Rossi, and G. W. Gross, "Carbon nanotube coating improves neuronal recordings," Nat. Nano, Vol. 3, 434, 2008.
doi: --- Either ISSN/ISBN or Series/Volume title must be supplied.

29. Bonard, J.-M., N. Weiss, H. Kind, T. Stockli, L. Forro, K. Kern, and A. Chatelain, "Tuning the field emission properties of patterned carbon nanotube films," Adv. Mater., Vol. 13, 184, 2001.

30. Wang, Z. and N. Koratkar, "Suppressing electrostatic screening in nanostructured electrode arrays," J. Nanosci. Nanotechno., Vol. 6, 1979, 2006.
doi:10.1098/rspa.1928.0091

31. Lin, M. C.-C., H. J. Lai, M. S. Lai, M. H. Yang, and A. K. Li, "Characteristic of field emission from carbon nanotubes synthesized from different sources," Mater. Phys. Mech., Vol. 4, 138, 2001.
doi:10.1146/annurev.anchem.1.031207.112814

32. Fowler, H. and L. Nordheim, "Electron emission in intense electric fields," Proc. R. Soc. A, Vol. 119, 173, 1928.
doi:10.1021/jp106245a

33. Stiles, P. L., J. A. Dieringer, N. C. Shah, and R. P. Van Duyne, "Surface-enhanced raman spectroscopy," Annu. Rev. Anal. Chem., Vol. 1, 601, 2008.
doi:10.1038/nature07378

34. Jin, M., V. Pully, C. Otto, A. van den Berg, and E. T. Carlen, "High-density periodic arrays of self-aligned subwavelength nanopyramids for surface-enhanced raman spectroscopy," J. Phys. Chem. C, Vol. 114, 21953, 2010.
doi:10.1209/0295-5075/91/46003

35. Camara, C. G., J. V. Escobar, J. R. Hird, and S. J. Putterman, "Correlation between nanosecond X-ray flashes and stickslip friction in peeling tape," Nature, Vol. 455, 1089, 2008.

36. Lazic, P. and B. N. J. Persson, "Surface-roughnessinduced electric-field enhancement and triboluminescence," Europhys. Lett., Vol. 91, 46003, 2010.

37. Sivula, K., F. Le Formal, and M. Gratzel, "Solar water splitting: Progress using hematite (α-Fe2O3) photoelectrodes," Chem. Sus. Chem., Vol. 4, 432, 2011.

38. Birtles, A. B., B. J. Mayo, and A. W. Bennett, "Defocussing of charged particle beams transmitted through meshes," PROC. IEE, Vol. 120, No. 2, 213-220, Feb. 1973.

39. Hudson, R. G. and J. Lipka, A Table of Integrals, Stanhope Press, Boston, 1917.

40. Bowman, F. and F. A. Gerard, Higher Calculus, Cambridge University Press, 1967.


© Copyright 2010 EMW Publishing. All Rights Reserved