PIER B
 
Progress In Electromagnetics Research B
ISSN: 1937-6472
Home | Search | Notification | Authors | Submission | PIERS Home | EM Academy
Home > Vol. 40 > pp. 305-324

A FEASIBILITY STUDY ON MICROWAVE IMAGING FOR BRAIN STROKE MONITORING

By R. Scapaticci, L. Di Donato, I. Catapano, and L. Crocco

Full Article PDF (844 KB)

Abstract:
The adoption of microwave imaging as a tool for non-invasive monitoring of brain stroke has recently gained increasing attention. In this respect, the paper aims at providing a twofold contribution. First, we introduce a simple design tool to devise guidelines to properly set the working frequency as well as to choose the optimum matching medium needed to facilitate the penetration of the probing wave into the head. Second, we propose an imaging strategy based on a modified formulation of the linear sampling method, which allows a quasi real time monitoring of the disease's evolution. The accuracy of the design guidelines and performance of the imaging strategy are assessed trough numerical examples dealing with 2D anthropomorphic phantoms.

Citation:
R. Scapaticci, L. Di Donato, I. Catapano, and L. Crocco, "A Feasibility Study on Microwave Imaging for Brain Stroke Monitoring," Progress In Electromagnetics Research B, Vol. 40, 305-324, 2012.
doi:10.2528/PIERB12022006

References:
1. Rosamon, W., et al., "Heart disease and stroke statistics --- 2007 update: A report from the American heart association statistics committee and stroke statistics subcommittee," Circulation, Vol. 115, e69-e171, 2007.
doi:10.1161/CIRCULATIONAHA.106.179918

2. Semenov, S. Y., R. H. Svenson, and G. P. Tatsis, "Microwave spectroscopy of myocardial ischemia and infarction. 1. Experimental study," Ann. Biomed. Eng., Vol. 28, 48-54, 2000.
doi:10.1114/1.253

3. Semenov, S. Y., et al., "Dielectrical spectroscopy of canine myocardium during acute ischemia and hypoxia at frequency spectrum from 100 kHz to 6 GHz ," IEEE Trans. Med. Imaging, Vol. 21, 547-550, 1994.

4. Semenov, S. Y. and D. R. Corfield, "Microwave tomography for brain imaging: Feasibility assessment for stroke detection," Int. J. Antennas Propag., Vol. 2008, Article ID 254830, 8 pages, 2008.

5. Ireland, D. and M. Bialkowski, Feasibility study on microwave stroke detection using a realistic phantom and the FDTD method , Proc. of Asia Pacific Microwave Conference, Singapore, 2010.

6. Ireland, D. and M. Bialkowski, "Microwave head imaging for stroke detection," Progress In Electromagnetics Research M, Vol. 21, 163-175, 2011.
doi:10.2528/PIERM11082907

7. Mesri, H. Y., M. K. Najafabadi, and T. McKelvey, A multidimensional signal processing approach for classification of microwave measurements with application to stroke type diagnosis, 33rd Annual International Conference of the IEEE EMBS, Boston, 2011.

8. Fhager, A. and M. Persson, A microwave measurement system for stroke detection, Antennas and Propagation Conference (LAPC), Loughborough, UK, Nov. 14-15, 2011.

9. Sultana, E., A. Khwaja, K. Mansetaa, Y. Mallalaha, Q. Zhang, L. Najafizadehc, A. Gandjbakhche, K. Pourrezad, and A. S. Daryoush, Comparison of tethered and untethered helmet mounted fNIR systems for TBI application, IEEE Wireless and Microwave Technology Conference, 2011.

10. Gilmore, C., A. Abubakar, W. Hu, T. M. Habashy, and P. M. van den Berg, "Microwave biomedical data inversion using the finite-difference contrast source inversion method," IEEE Trans. Antenn. Propag., Vol. 57, 1528-1538, 2009.
doi:10.1109/TAP.2009.2016728

11. Mohammed, B. J., A. M. Abbosh, D. Ireland, and M. E. Bialkowski, "Compact wideband antenna for microwave imaging of brain stroke," Progress In Electromagnetics Research C, Vol. 27, 27-39, 2012.
doi:10.2528/PIERC11102708

12. Bertero, M. and P. Boccacci, "Introduction to inverse problems in imaging," Inst. Phys., Bristol, UK, 1998.

13. Isernia, T., V. Pascazio, and R. Pierri, "On the local minima in a tomographic imaging technique," IEEE Trans. Geosci. Remote Sens., Vol. 39, 1596-1607, 2001.
doi:10.1109/36.934091

14. Cakoni, F. and D. Colton, Qualitative Methods in Inverse Scattering Theory, Springer-Verlag, Berlin Heidelberg, 2006.

15. Catapano, I. and L. Crocco, "An imaging method for concealed targets," IEEE Trans. Geosci. Remote Sens., Vol. 47, 1301-1309, 2009.
doi:10.1109/TGRS.2008.2010773

16. Slaney, M., A. C. Kak, and L. E. Larsen, "Limitations of imaging with first-order diffraction tomography," IEEE Trans. Microwave Theory Tech., Vol. 32, 860-874, 1984.
doi:10.1109/TMTT.1984.1132783

17. Catapano, I., L. Di Donato, L. Crocco, O. M. Bucci, A. F. Morabito, T. Isernia, and R. Massa, "On quantitative microwave tomography of female breast," Progress In Electromagnetics Research, Vol. 97, 75-93, 2009.
doi:10.2528/PIER09080604

18. Catapano, I., L. Crocco, L. Di Donato, G. Angiulli, T. Isernia, A. F. Morabito, S. Tringali, O. M. Bucci, and R. Massa, Guidelines for effective microwave breast imaging: An accurate numerical assessment against 3D anthropomorphic phantoms, Proceeding EUCAP 2010 --- European Conference on Antennas & Propagation, Barcelona, Spain, Apr. 12-16, 2009.

19. Gabriel, S., R. W. Lau, and C. Gabriel, "Dielectric properties of biological tissue: III. Parametric models for the dielectric spectrum of tissues," Phys. Med. Biol., Vol. 41, 2271-2293, 1996.
doi:10.1088/0031-9155/41/11/003

20. Balanis, C. A., Advanced Engineering Electromagnetics, John Wileys and Sons, 1989.

21. Zubal, I. G., C. R. Harrell, E. O. Smith, Z. Rattner, G. Gindi, and P. B. Hoffer, "Computerized three-dimensional segmented human anatomy," Med. Phys., Vol. 21, No. 2, 299-302, 1994.
doi:10.1118/1.597290

22. Dielectric properties of body tissues in the frequency range 10 Hz-100 GHz, http://niremf.ifac.cnr.it/tissprop.

23. Richmond, J., "Scattering by a dielectric cylinder of arbitrary cross section shape," IEEE Trans. Antenn. Propag., Vol. 13, No. 13, 334-341, 1965.
doi:10.1109/TAP.1965.1138427

24. Romeo, S., L. Di Donato, O. M. Bucci, I. Catapano, L. Crocco, M. R. Scarfi, and R. Massa, "Dielectric characterization study of liquid based materials for mimicking breast tissues," Microwave Opt. Tech. Lett., Vol. 53, 1276-1280, 2011.
doi:10.1002/mop.26001

25. Catapano, I., L. Crocco, and T. Isernia, "On simple methods for shape reconstruction of unknown scatterers," IEEE Trans. Antenn. Propag., Vol. 55, 1431-1436, 2007.
doi:10.1109/TAP.2007.895563

26. Catapano, I., L. Crocco, and T. Isernia, "Linear sampling method: Physical interpretation and guidelines for a successful application," PIERS Online, Vol. 4, No. 2, 291-295, 2008.
doi:10.2529/PIERS071005053840

27. Catapano, I., L. Crocco, and T. Isernia, "Sampling methods for shape reconstruction of 3D buried targets," IEEE Trans. Geosci. Remote Sens., Vol. 46, 3265-3273, 2008.
doi:10.1109/TGRS.2008.921745

28. Colton, D., K. Giebermann, and P. Monk, "A regularized sampling method for solving three dimensional inverses scattering problems," SIAM J. Sci. Comput., Vol. 21, 2316-2330, 2000.
doi:10.1137/S1064827598340159

29. Catapano, I., L. Crocco, M. D'Urso, and T. Isernia, "3D microwave imaging via preliminary support reconstruction: Testing on the Fresnel 2008 database ," Inverse Probl., Vol. 25, 024002, 2009.
doi:10.1088/0266-5611/25/2/024002


© Copyright 2010 EMW Publishing. All Rights Reserved