Vol. 43
Latest Volume
All Volumes
PIERB 105 [2024] PIERB 104 [2024] PIERB 103 [2023] PIERB 102 [2023] PIERB 101 [2023] PIERB 100 [2023] PIERB 99 [2023] PIERB 98 [2023] PIERB 97 [2022] PIERB 96 [2022] PIERB 95 [2022] PIERB 94 [2021] PIERB 93 [2021] PIERB 92 [2021] PIERB 91 [2021] PIERB 90 [2021] PIERB 89 [2020] PIERB 88 [2020] PIERB 87 [2020] PIERB 86 [2020] PIERB 85 [2019] PIERB 84 [2019] PIERB 83 [2019] PIERB 82 [2018] PIERB 81 [2018] PIERB 80 [2018] PIERB 79 [2017] PIERB 78 [2017] PIERB 77 [2017] PIERB 76 [2017] PIERB 75 [2017] PIERB 74 [2017] PIERB 73 [2017] PIERB 72 [2017] PIERB 71 [2016] PIERB 70 [2016] PIERB 69 [2016] PIERB 68 [2016] PIERB 67 [2016] PIERB 66 [2016] PIERB 65 [2016] PIERB 64 [2015] PIERB 63 [2015] PIERB 62 [2015] PIERB 61 [2014] PIERB 60 [2014] PIERB 59 [2014] PIERB 58 [2014] PIERB 57 [2014] PIERB 56 [2013] PIERB 55 [2013] PIERB 54 [2013] PIERB 53 [2013] PIERB 52 [2013] PIERB 51 [2013] PIERB 50 [2013] PIERB 49 [2013] PIERB 48 [2013] PIERB 47 [2013] PIERB 46 [2013] PIERB 45 [2012] PIERB 44 [2012] PIERB 43 [2012] PIERB 42 [2012] PIERB 41 [2012] PIERB 40 [2012] PIERB 39 [2012] PIERB 38 [2012] PIERB 37 [2012] PIERB 36 [2012] PIERB 35 [2011] PIERB 34 [2011] PIERB 33 [2011] PIERB 32 [2011] PIERB 31 [2011] PIERB 30 [2011] PIERB 29 [2011] PIERB 28 [2011] PIERB 27 [2011] PIERB 26 [2010] PIERB 25 [2010] PIERB 24 [2010] PIERB 23 [2010] PIERB 22 [2010] PIERB 21 [2010] PIERB 20 [2010] PIERB 19 [2010] PIERB 18 [2009] PIERB 17 [2009] PIERB 16 [2009] PIERB 15 [2009] PIERB 14 [2009] PIERB 13 [2009] PIERB 12 [2009] PIERB 11 [2009] PIERB 10 [2008] PIERB 9 [2008] PIERB 8 [2008] PIERB 7 [2008] PIERB 6 [2008] PIERB 5 [2008] PIERB 4 [2008] PIERB 3 [2008] PIERB 2 [2008] PIERB 1 [2008]
2012-08-23
A Macrobasis Function Model for Characterizing Finite Large-Area Metamaterials
By
Progress In Electromagnetics Research B, Vol. 43, 211-238, 2012
Abstract
An acceleration technique for the MoM solution of large-area metamaterial arrays is proposed that relies on numerical extraction of the modal profile associated with the individual array elements followed by projection of the global system equations onto a judiciously constructed reduced solution space. To further enhance the performance of the underlying MoM computations an IE-FFT engine is developed that is adapted for the underlying JMCFIE formulation and higher order quadrilateral discretization. A number of large-area metamaterial arrays are solved and the computational statistics are presented to reflect the advantage of the the proposed methodology.
Citation
Davood Ansari Oghol Beig, and Hossein Mosallaei, "A Macrobasis Function Model for Characterizing Finite Large-Area Metamaterials," Progress In Electromagnetics Research B, Vol. 43, 211-238, 2012.
doi:10.2528/PIERB12072110
References

1. Coifman, R., V. Rokhlin, and S. Wandzura, "The fast multipole method for the wave equation: A pedestrian prescription," IEEE Trans. Ant. Prop., Vol. 35, No. 3, 7-12.

2. Seo, S. M. and J.-F. Lee, "A fast IE-FFT algorithm for solving PEC scattering problems," IEEE Trans. Magn., Vol. 41, 1476-1479, May 2005.

3. Zhang, B., G. Xiao, J. Mao, and Y. Wang, "Analyzing large-scale non-periodic arrays with synthetic basis functions," IEEE Trans. Ant. Prop., Vol. 58, No. 11, Nov. 2010.

4. Prakash, V. and R. Mittra, "Characteristic basis function method: A new technique for efficient solution of method of moments matrix equations," Micro. Opt. Tech. Letters, Vol. 36, Jan. 2003.

5. Hu, L., R. Mittra, and L.-W. Li, "lectromagnetic scattering by finite periodic arrays using the characteristic basis function and adaptive integral methods," IEEE Trans. Ant. Prop., Vol. 58, 3086-3090, Sep. 2010.
doi:10.1109/TAP.2010.2052563

6. Du, K. and R. Mittra, "Characteristic basis function method for iteration-free solution of large method of moments problems," Progress In Electromagnetic Research, Vol. 6, 307-336, 2006.

7. Maaskant, R., R. Mittra, and A. Tijhuis, "Fast analysis of large antenna arrays using the characteristic basis function method and the adaptive cross approximation algorithm," IEEE Trans. Ant. Prop., Vol. 56, No. 11, 3440-3451, Nov. 2008.
doi:10.1109/TAP.2008.2005471

8. Xiao, K., F. Zhao, S. L. Chai, J. J. Mao, and L.-W. Li, "Scattering analysis of periodic arrays using combined CBF/P-FFT method," Progress In Electromagnetic Research, Vol. 115, 131-146, 2011.

9. Rashidi, A., H. Mosallaei, and R. Mittra, "Scattering analysis of plasmonic nanorod antennas: A novel numerically efficient computational scheme utilizing macro basis functions," Journal of Applied Physics, Vol. 109, 2011.

10. Stratton, J. A. and L. J. Chu, "Diffraction theory of electromagnetic waves," Phys. Rev., Vol. 56, 99-107, Jul. 1939.

11. Yla-Oijala, P. and M. Taskinen, "Application of combined field integral equation for electromagnetic scattering by dielectric and composite objects," IEEE Trans. Ant. Prop., Vol. 53, No. 3, 1168-1173, Mar. 2005.
doi:10.1109/TAP.2004.842640

12. Taskinen, M., "On the implementation and formulation of electromagnetic surface integral equations," , Ph.D. Thesis, 2006.

13. Solin, P. and K. Segeth, Higher-order Finite Element Methods, Chapman & Hall, 2004.
doi:10.1109/TAP.2004.831292

14. Graglia, R. D. and G. Lombardi, "Singular higher order complete vector bases for finite methods," IEEE Trans. Ant. Prop., Vol. 52, No. 7, 1672-1685, Jul. 2004.
doi:10.1103/PhysRevB.6.4370

15. Johnson, P. B. and R. W. Christy, "Optical constants of the noble metals," Phys. Rev. B, Vol. 6, 4370-4379, 1972.

16. Stratton, J. A., Electromagnetic Theory, McGraw Hill, 1941.

17. Ahmadi, A. and H. Mosallaei, "Physical configuration and performance modeling of all-dielectric metamaterials," Phys. Rev. B, Vol. 77, 2008.

18. Ghadarghadr, S. and H. Mosallaei, "Coupled dielectric nanoparticles manipulating metamaterials optical characteristics," IEEE Trans. Nanotechnol., Vol. 8, 585-594, Sep. 2009.
doi:10.1109/TAP.2010.2103022

19. Ahmadi, A., S. Saadat, and H. Mosallaei, "Resonance and Q performance of ellipsoidal eng subwavelength radiators," IEEE Trans. Ant. Prop., Vol. 59, No. 3, 706-713, Mar. 2011.

20. Biagioni, P., J.-S. Huang, and B. Hecht, "Nanoantennas for visible and infrared radiation," Rep. Prog. Phys., Vol. 75, 2012.
doi:10.1021/nn100993t

21. Lipomi, D. J., M. A. Kats, P. Kim, S. H. Kang, J. Aizenberg, F. Capasso, and G. M. Whitesides, "Fabrication and replication of arrays of single- or multicomponent nanostructures by replica molding and mechanical sectioning," ACS Nano, Vol. 4, No. 7, 4017-4026, 2010.