PIER B
 
Progress In Electromagnetics Research B
ISSN: 1937-6472
Home | Search | Notification | Authors | Submission | PIERS Home | EM Academy
Home > Vol. 44 > pp. 191-221

CELLULAR SYSTEM INFORMATION CAPACITY CHANGE AT HIGHER FREQUENCIES DUE TO PROPAGATION LOSS AND SYSTEM PARAMETERS

By K. A. Anang, P. B. Rapajic, R. Wu, L. Bello, and T. I. Eneh

Full Article PDF (1,182 KB)

Abstract:
In this paper, mathematical analysis supported by computer simulation is used to study cellular system information capacity change due to propagation loss and system parameters (such as path loss exponent, shadowing and antenna height) at microwave carrier frequencies greater than 2 GHz and smaller cell size radius. An improved co-channel interference model, which includes the second tier co-channel interfering cells is used for the analysis. The system performance is measured in terms of the uplink information capacity of a time-division multiple access (TDMA) based cellular wireless system. The analysis and simulation results show that the second tier co-channel interfering cells become active at higher microwave carrier frequencies and smaller cell size radius. The results show that for both distance-dependent: path loss, shadowing and effective road height the uplink information capacity of the cellular wireless system decreases as carrier frequency fc increases and cell size radius R decreases. For example at a carrier frequency fc = 15.75 GHz, basic path loss exponent α = 2 and cell size radius R = 100, 500 and 1000 m the decrease in information capacity was 20, 5.29 and 2.68%.

Citation:
K. A. Anang, P. B. Rapajic, R. Wu, L. Bello, and T. I. Eneh, "Cellular system information capacity change at higher frequencies due to propagation loss and system parameters," Progress In Electromagnetics Research B, Vol. 44, 191-221, 2012.
doi:10.2528/PIERB12080908
http://www.jpier.org/pierb/pier.php?paper=12080908

References:
1. Lee, W. C. Y., "Spectrum efficiency in cellular," IEEE Trans. Veh. Technol., Vol. 38, 69-75, May 1989.
doi:10.1109/25.61338

2. Pahlavan, K. and A. H. Levesque, "Wireless data communication," Proc. IEEE, Vol. 82, 1398-1430, Sep. 1994.
doi:10.1109/5.317085

3. Takada, J., J. Fu, H. Zhu, and T. Kobayashi, "Spatio-temporal channel characterization in a suburban non line-of-sight microcellular environment," IEEE J. Select. Areas Commun., Vol. 20, No. 3, 532-538, Apr. 2002.
doi:10.1109/49.995512

4. Masui, H., T. Kobayashi, and M. Akaike, "Microwave path-loss modeling in urban line-of-sight environments," IEEE J. Select. Areas Commun., Vol. 20, No. 6, 1151-1155, Aug. 2002.
doi:10.1109/JSAC.2002.801215

5. Kitao, K. and S. Ichitsubo, "Path loss prediction formula for microcell in 400MHz to 8 GHz band," IET Electronics Letters, Vol. 40, No. 11, 685-687, May 2004.
doi:10.1049/el:20040475

6. Hernandez-Valdez, G., F. A. Cruz-Perez, and D. Lara-Rodriguez, "Sensitivity of the system performance to the propagation parameters in LOS microcellular environments," IEEE Trans. Veh. Technol., Vol. 57,\, No. 6, 3488-3508, Nov. 2008.

7. Cox, D. C., R. R. Murray, and A. W. Norris, "Antenna height dependence of 800MHz attenuation measured in houses," IEEE Trans. Veh. Technol., Vol. 34, No. 2, 108-115, May 1985.
doi:10.1109/T-VT.1985.24043

8. Green, E., "Radio link design for microcellular systems ," British Telecom. Technology, Vol. 8, No. 1, 1990.

9. Cruz-Perez, F. A. and D. Lara-Rodriguez, "Impact of the break-point distance on the reverse link capacity of a CDMA manhattan like microcellular system," Proc. 5th IEEE International Symposium on Spread Spectrum Techniques and Applications (ISSSTA' 1998), Vol. 1, 262-266, Sun City, South Africa, Sep. 1998.

10. Min, S. and H. L. Bertoni, "Effect of path loss on CDMA system design for highway microcells," Proc. 48th IEEE Vehicular Technology Conference (VTC'1998), 1009-1013, Ottawa, Canada, May 1998.

11. Alouini, M. and A. J. Goldsmith, "Area spectral efficiency of cellular mobile radio systems," IEEE Trans. Veh. Technol., Vol. 48, No. 4, 1047-1065, Jul. 1999.
doi:10.1109/25.775355

12. Ho, C., J. Copeland, C. Lea, and G. Stuber, "Impact of the cell size on the cell's Erlang capacity and call admission control in the DS/CDMA cellular networks," Proc. 51st IEEE Vehicular Technology Conference (VTC'2000-Spring), Vol. 1, 385-389, May 2000.

13. Hernandez-Valdez, G., F. A. Cruz-Perez, and M. Lara, "Impact of the cell size and the propagation model parameters on the performance of microcellular networks," Proc. 11th IEEE International Symposium on Personal, Indoor and Mobile Radio Communications (PIMRC'2000), Vol. 1, 292-296, London, UK, 2000.

14. Har, D. and H. L. Bertoni, "Effect of anisotropic propagation modeling on microcellular system design," IEEE Trans. Veh. Technol., Vol. 49, No. 4, 1303-1313, Aug. 2000.
doi:10.1109/25.875247

15. Ahmed, B. T., M. C. Ramon, and L. de Haro Ariet, "Capacity and interference statistics of highways W-CDMA cigar-shaped microcells (uplink analysis)," IEEE Commun. Lett., Vol. 6, No. 5, 172-174, Aug. 2002.
doi:10.1109/4234.1001654

16. Anang, K. A., P. B. Rapajic, T. I. Eneh, and G. Oletu, "Sensitivity of information capacity of land mobile cellular system to the base station antenna height at higher microwave frequencies," Proc. 3rd International Conference on Computer Research and Development (ICCRD'2011), Vol. 3, 167-172, Shanghai, China, May 2011.
doi:10.1109/ICCRD.2011.5764271

17. Anang, K. A., P. B. Rapajic, T. I. Eneh, and B. Lawal, "Sensitivity of information capacity of land mobile cellular system to propagation loss parameters at higher microwave frequencies," Proc. 7th IEEE International Wireless Communications and Mobile Computing Conference, 630-635, Istanbul, Turkey, Jul. 2011.

18. Zhou, S., M. Zhao, X. Xu, J. Wang, and Y. Yao, "Distributed wireless communication system: A new architecture for future public wireless access," IEEE Commun. Mag., Vol. 41, 108-113, 2003.
doi:10.1109/MCOM.2003.1186553

19. Anang, K. A., P. B. Rapajic, T. I. Eneh, and Y. Nijsure, "Minimum cell size for information capacity increase in cellular wireless network," Proc. 73rd IEEE Vehicular Technology Conference (VTC'2011), 305-311, Budapest, Hungary, May 2011.

20. Ge, X., K. Huang, C. X. Wang, X. Hong, and X. Yang, "Capacity analysis of a multi-cell multi-antenna cooperative cellular network with co-channel interference," IEEE Trans. Wireless Commun., Vol. 10, No. 10, 3298-3309, Oct. 2011.
doi:10.1109/TWC.2011.11.101551

21. Nisirat, M. A., M. Ismail, L. Nissirat, and S. A. Alkhawaldeh, "A terrain roughness correction factor for Hata path loss model at 900 MHz," Progress In Electromagnetics Research C, Vol. 22, 11-22, 2011.
doi:10.2528/PIERC11041402

22. Phaebua, K., C. Phongcharoenpanich, M. Krairiksh, and T. Lertwiriyaprapa, "Path-loss prediction of radio wave propagation in an orchard by using modified UTD method," Progress In Electromagnetics Research, Vol. 128, 347-363, 2012.

23. Sirkova, I., "Propagation factor and path loss simulation results for two rough surface reflection coefficients applied to the microwave ducting propagation over the sea," Progress In Electromagnetics Research M, Vol. 17, 151-166, 2011.

24. Caluyo, F. S. and J. C. D. Cruz, "Antenna characterization and determination of path loss exponents for 677MHz channel using fixed and portable digital terrestrial television," Progress In Electromagnetics Research C, Vol. 29, 149-161, 2012.

25. Ne·skovic, A., N. Ne·skovic, and D. Paunoc, "Macrocell electric field strength prediciton model based upon artificial neural networks," IEEE J. Select. Areas Commun., Vol. 20, No. 6, 1170-1176, Aug. 2002.
doi:10.1109/JSAC.2002.801217

26. Cruz-Perez, F. A., D. Lara-Rodriguez, and M. Lara, "Full- and half-square cell plans in urban CDMA microcellular networks," IEEE Trans. Veh. Technol., Vol. 52, No. 3, 502-511, May 2003.
doi:10.1109/TVT.2003.811531

27. Oda, Y., K. Tsuunekawa, and M. Hata, "Advanced los path-loss model in microcellular mobile communications," IEEE Trans. Veh. Technol., Vol. 49, No. 6, 2121-2125, Nov. 2000.
doi:10.1109/25.901884

28. Zhao, X., J. Kivinen, P. Vainikainen, and K. Skog, "Propagation characteristics for wideband outdoor mobile communications at 5.3 GHz," IEEE J. Select. Areas Commun., Vol. 20, No. 3, 507-514, 2002.
doi:10.1109/49.995509

29. Sarkar, T. K., Z. Ji, K. Kim, A. Medouri, and M. Salazar-Palma, "A survey of various propagation models for mobile communication," IEEE Antennas Propagat. Mag., Vol. 45, 51-74, Jun. 2003.
doi:10.1109/MAP.2003.1232163

30. Green, E. and M. Hata, "Microcellular propagation measurements in an urban environment," Proc. 1st IEEE International Symposium on Personal, Indoor and Mobile Radio Communications (PIMRC'1991), 324-328, London, UK, Sep. 1991.

31. G. TR25.996, "3GPP SCM channel models," 3GPP TR25.996, Vol. v6.1.0, Sep. 2003.

32. ITU, "Propagation data and prediction methods for planning of short-range outdoor radiocommunication systems and radio local area networks in the frequency range 300MHz to 100 GHz,", Recommendation ITU-R P.1411-1, iTU Radiocommunication Assembly, 2012.

33. Stuber, G. L., Principles of Mobile Communication, 2nd Ed., 98-100, Kluwer Academic, Norwell, MA, 2001.

34. Lee, W. C. Y., Mobile Communication Design Fundamentals, 142, John Wiley & Sons, New York, NY, 1993.
doi:10.1002/9780470930427

35. Singh, S., N. B. Mehta, A. F. Molisch, and A. Mukhopadhyay, "Moment-matched lognormal modeling of uplink interference with power control and cell selection," IEEE Trans. Wireless Commun., Vol. 9, No. 3, 932-938, Mar. 2010.
doi:10.1109/TWC.2010.03.090521


© Copyright 2010 EMW Publishing. All Rights Reserved