Vol. 47
Latest Volume
All Volumes
PIERB 105 [2024] PIERB 104 [2024] PIERB 103 [2023] PIERB 102 [2023] PIERB 101 [2023] PIERB 100 [2023] PIERB 99 [2023] PIERB 98 [2023] PIERB 97 [2022] PIERB 96 [2022] PIERB 95 [2022] PIERB 94 [2021] PIERB 93 [2021] PIERB 92 [2021] PIERB 91 [2021] PIERB 90 [2021] PIERB 89 [2020] PIERB 88 [2020] PIERB 87 [2020] PIERB 86 [2020] PIERB 85 [2019] PIERB 84 [2019] PIERB 83 [2019] PIERB 82 [2018] PIERB 81 [2018] PIERB 80 [2018] PIERB 79 [2017] PIERB 78 [2017] PIERB 77 [2017] PIERB 76 [2017] PIERB 75 [2017] PIERB 74 [2017] PIERB 73 [2017] PIERB 72 [2017] PIERB 71 [2016] PIERB 70 [2016] PIERB 69 [2016] PIERB 68 [2016] PIERB 67 [2016] PIERB 66 [2016] PIERB 65 [2016] PIERB 64 [2015] PIERB 63 [2015] PIERB 62 [2015] PIERB 61 [2014] PIERB 60 [2014] PIERB 59 [2014] PIERB 58 [2014] PIERB 57 [2014] PIERB 56 [2013] PIERB 55 [2013] PIERB 54 [2013] PIERB 53 [2013] PIERB 52 [2013] PIERB 51 [2013] PIERB 50 [2013] PIERB 49 [2013] PIERB 48 [2013] PIERB 47 [2013] PIERB 46 [2013] PIERB 45 [2012] PIERB 44 [2012] PIERB 43 [2012] PIERB 42 [2012] PIERB 41 [2012] PIERB 40 [2012] PIERB 39 [2012] PIERB 38 [2012] PIERB 37 [2012] PIERB 36 [2012] PIERB 35 [2011] PIERB 34 [2011] PIERB 33 [2011] PIERB 32 [2011] PIERB 31 [2011] PIERB 30 [2011] PIERB 29 [2011] PIERB 28 [2011] PIERB 27 [2011] PIERB 26 [2010] PIERB 25 [2010] PIERB 24 [2010] PIERB 23 [2010] PIERB 22 [2010] PIERB 21 [2010] PIERB 20 [2010] PIERB 19 [2010] PIERB 18 [2009] PIERB 17 [2009] PIERB 16 [2009] PIERB 15 [2009] PIERB 14 [2009] PIERB 13 [2009] PIERB 12 [2009] PIERB 11 [2009] PIERB 10 [2008] PIERB 9 [2008] PIERB 8 [2008] PIERB 7 [2008] PIERB 6 [2008] PIERB 5 [2008] PIERB 4 [2008] PIERB 3 [2008] PIERB 2 [2008] PIERB 1 [2008]
2012-12-10
Quasi-Newton Model-Trust Region Approach to Surrogate-Based Optimisation of Planar Metamaterial Structures
By
Progress In Electromagnetics Research B, Vol. 47, 1-17, 2013
Abstract
A novel implementation of aggressive space mapping (ASM) for the automatic layout synthesis of planar metamaterial structures is outlined in this article. Specifically, we employ a model-trust region optimisation approach to significantly reduce the computational burden associated with the direct optimisation of high-fidelity models. A Visual Basic for application (VBA) link to a commercial full-wave electromagnetic (EM) solver is created, to ensure that the automated Matlab-based platform has complete control of the design and analysis of the entire ASM process. The validity and efficiency of our approach is demonstrated with examples of complementary split-ring resonator (CSRR)-loaded transmission lines, comparing both modified and unmodified version of the quasi-Newton iteration within the ASM framework.
Citation
Patrick J. Bradley, "Quasi-Newton Model-Trust Region Approach to Surrogate-Based Optimisation of Planar Metamaterial Structures," Progress In Electromagnetics Research B, Vol. 47, 1-17, 2013.
doi:10.2528/PIERB12100507
References

1. Bandler, J. W., R. M. Biernacki, S. H. Chen, P. A. Grobelny, and R. H. Hemmers, "Space mapping technique for electromagnetic optimization," IEEE Transactions on Microwave Theory and Techniques, Vol. 42, No. 12, 2536-2544, Dec. 1994.
doi:10.1109/22.339794

2. Koziel, S., Q. S. Cheng, and J. W. Bandler, "Rapid design optimisation of microwave structures through automated tuning space mapping," IET Microwaves, Antennas Propagation, Vol. 4, No. 11, 1892-1902, Nov. 2010.
doi:10.1049/iet-map.2009.0618

3. Koziel, S., J. W. Bandler, and Q. S. Cheng, "Robust trust-region space-mapping algorithms for microwave design optimization," IEEE Transactions on Microwave Theory and Techniques, Vol. 58, No. 8, 2166-2174, Aug. 2010.
doi:10.1109/TMTT.2010.2052666

4. Bandler, J. W., R. M. Biernacki, S. H. Chen, R. H. Hemmers, and K. Madsen, "Electromagnetic optimization exploiting aggressive space mapping," IEEE Transactions on Microwave Theory and Techniques, Vol. 43, No. 12, 2874-2882, Dec. 1995.
doi:10.1109/22.475649

5. Nocedal, J. and J. Wright, Numerical Optimization, Springer, Aug. 2000.

6. Pawlowski, R. P., J. P. Simonis, H. F. Walker, and J. N. Shadid, "Inexact newton dogleg methods," SIAM J. Numer. Anal., Vol. 46, No. 4, 2112-2132, May 2008.
doi:10.1137/050632166

7. Bakr, M. H., J. W. Bandler, R. Biernacki, S. Chen, and K. Madsen, "A trust region aggressive space mapping algorithm for em optimization," IEEE Transactions on Microwave Theory and Techniques, Vol. 46, 2412-2425, 1998.
doi:10.1109/22.739229

8. Selga, J., A. Rodriguez, M. Gil, J. Carbonell, V. E. Boria, and F. Martin, "Towards the automatic layout synthesis in resonanttype metamaterial transmission lines," IET Microwaves, Antennas Propagation, Vol. 4, No. 8, 1007-1015, Aug. 2010.
doi:10.1049/iet-map.2009.0551

9. Bonache, J., M. Gil, I. Gil, J. Garcia-Garcia, and F. Martin, "On the electrical characteristics of complementary metamaterial resonators," IEEE Microwave and Wireless Components Letters, Vol. 16, No. 10, 543-545, Oct. 2006.
doi:10.1109/LMWC.2006.882400

10. Gil, I., J. Bonache, M. Gil, J. García-García, F. Martín, and R. Marquées, "Accurate circuit analysis of resonant-type left handed transmission lines with inter-resonator coupling," Journal of Applied Physics, Vol. 100, No. 7, 074908, 2008.
doi:10.1063/1.2353174

11. Hu, X., Q. Zhang, Z. Lin, and S. He, "Equivalent circuit of complementary split-ring resonator loaded transmission line," Microwave and Optical Technology Letters, Vol. 51, No. 10, 2432-2434, 2009.
doi:10.1002/mop.24625

12. Caloz, C. and T. Itoh, Electromagnetic Metamaterials: Transmission Line Theory and Microwave Applications, Wiley, 2005.

13. Pozar, D. M., Microwave Engineering, 3rd Ed., Wiley, 2005.

14. Baena, J. D., J. Bonache, F. Martin, R. M. Sillero, F. Falcone, T. Lopetegi, M. A. G. Laso, J. Garcia-Garcia, I. Gil, M. F. Portillo, and M. Sorolla, "Equivalent-circuit models for split-ring resonators and complementary split-ring resonators coupled to planar transmission lines ," IEEE Transactions on Microwave Theory and Techniques, Vol. 53, No. 4, 1451-1461, Apr. 2005.
doi:10.1109/TMTT.2005.845211

15. Bahl, I. J. and P. Bhartia, Microwave Solid State Circuit Design, Wiley-Interscience, 2003.

16. Vicente, L. N., "Space mapping: Models, sensitivities, and trustregions methods," Optimization and Engineering, Vol. 4, 159-175, 2003.
doi:10.1023/A:1023968629245

17. Dennis, Jr., J. E. and R. B. Schnabel, Numerical Methods for Unconstrained Optimization and Nonlinear Equations (Classics in Applied Mathematics), Vol. 16, Society for Industrial & Applied Mathematics, 1996.

18. Powell, M. J. D., A hybrid method for nonlinear equations, Numerical Methods for Nonlinear Algebraic Equations, Philip Rabinowitz, Ed., 87-114, Gordon & Breach, 1970.

19. Dennis, J. E. and H. H. W. Mei, "Two new unconstrained optimization algorithms which use function and gradient values," Journal of Optimization Theory and Applications, Vol. 28, 453-482, 1979.
doi:10.1007/BF00932218

20. Bonache, J., M. Gil, O. Garca-Abad, and F. Martn, "Parametric analysis of microstrip lines loaded with complementary split ring resonators," Microwave and Optical Technology Letters, Vol. 50, No. 8, 2093-2096, Aug. 2008.
doi:10.1002/mop.23571