Vol. 47

Latest Volume
All Volumes
All Issues
2012-12-25

Energy Estimation Based TR-MUSIC Microwave Imaging for Extended Targets

By Guangfu Zhang, Williams Weiji Wang, and Wei Wang
Progress In Electromagnetics Research B, Vol. 47, 107-126, 2013
doi:10.2528/PIERB12100509

Abstract

A simple and effective double-thresholding strategy based on energy estimation is proposed to choose the optimal boundary between the signal subspace and noise subspace in TR-MUSIC algorithm for microwave imaging of extended targets. Simulations and imaging results are given to demonstrate its strong noise rejection and super-resolution capability. In the new method, the shape details of extended targets can be obtained from single frequency or multi-frequency scattering data.

Citation


Guangfu Zhang, Williams Weiji Wang, and Wei Wang, "Energy Estimation Based TR-MUSIC Microwave Imaging for Extended Targets," Progress In Electromagnetics Research B, Vol. 47, 107-126, 2013.
doi:10.2528/PIERB12100509
http://www.jpier.org/PIERB/pier.php?paper=12100509

References


    1. Siegel, R., E. Ward, O. Brawley, and A. Jemal, "Cancer statistics, 2011: The impact of eliminating socioeconomic and racial disparities on premature caner dealths ," CA Caner. J. Clin., Vol. 61, No. 4, 212-236, 2011.
    doi:10.3322/caac.20121

    2. Hassan, A. M. and M. El-Shenawee, "Review of electromagnetic techniques for breast cancer detection," IEEE Reviews in Biomedical Engineering, Vol. 4, 103-118, 2010.

    3. Fear, E. C., P. M. Meaney, and M. A. Stuchly, "Microwaves for breast cancer detection," IEEE Potentials, Vol. 22, No. 1, 12-18, 2003.
    doi:10.1109/MP.2003.1180933

    4. Flores-Tapia, D., G. Thomas, and S. Pistorius, An improved wavefront reconstruction method for breast microwave imaging, 31st Annual International Conference of the IEEE EMBS Minneapolis, Minnesota, USA, Sep. 2-6, 2009.

    5. Klemm, M., I. J. Craddock, J. A. Leendertz, A. Preece, and R. Benjamin, "Radar-based breast cancer detection using a hemispherical antenna array --- Experimental results," IEEE Trans. Antennas Propag., Vol. 57, No. 6, 1692-1704, Jun. 2009.
    doi:10.1109/TAP.2009.2019856

    6. Li, X. and S. C. Hagness, "A confocal microwave imaging algorithm for breast cancer detection," IEEE Microwave and Wireless Components Letters, Vol. 11, No. 3, 130-132, 2001.
    doi:10.1109/7260.915627

    7. Fear, E. C., X. Li, S. C. Hagness, and M. A. Stuchly, "Confocal microwave imaging for breast cancer detection: Localization of tumors in three dimensions," IEEE Transactions on Biomedical Engineering, Vol. 49, No. 8, 812-822, 2002.
    doi:10.1109/TBME.2002.800759

    8. O'Halloran, M., E. Jones, and M. Glavin, "Quasi-multistatic MIST beamforming for the early detection of breast cancer," IEEE Transactions on Biomedical Engineering, Vol. 57, No. 4, 830-840, Apr. 2010.
    doi:10.1109/TBME.2009.2016392

    9. Chen, Y., I. J. Craddock, and P. Kosmas, "Multiple-input multiple-output radar for lesion classification in ultrawideband breast imaging," IEEE J. Selected Topics in Signal Processing, Vol. 4, No. 1, 187-201, Feb. 2010.
    doi:10.1109/JSTSP.2009.2038975

    10. Lev-Ari, H. and A. J. Devaney, "The time-reversal technique re-interpreted: Subspace-based signal processing for multi-static target location," Proceedings of the 2000 IEEE Sensor Array and Multichannel Signal Processing Workshop , 509-513, 2000.

    11. Gruber, F. K., E. A. Margengo, and A. J. Devaney, "Time-reversal imaging with multiple signal classification considering multiple scattering between the targets," J. Acoust. Soc. Amer., Vol. 115, 3042-3047, 2004.
    doi:10.1121/1.1738451

    12. Devaney, A. J., E. A. Margengo, and F. K. Gruber, "Time-reversal-based imaging and inverse scattering of multiply scattering point targets," J. Acoust. Soc. Amer., Vol. 118, 3129-3138, 2005.
    doi:10.1121/1.2042987

    13. Hou, S., K. Solna, and H. Zhao, "A direct imaging algorithm for extended targets," Inv. Probl., Vol. 22, 1151-1178, 2006.
    doi:10.1088/0266-5611/22/4/003

    14. Marengo, E. A., F. K. Gruber, and F. Simonetti, "Time-reversal MUSIC imaging of extended targets," IEEE Trans. Image Processing, Vol. 16, No. 8, 1967-1984, Aug. 2007.
    doi:10.1109/TIP.2007.899193

    15. Zhang, W. and A. Hoorfar, "Through-the-wall target location with time reversal MUSIC method," Progress In Electromagnetics Research, Vol. 106, 75-89, 2010.
    doi:10.2528/PIER10052408

    16. Liu, X.-F., B.-Z. Wang, and J. L.-W. Li, "Transmitting-mode time reversal imaging using MUSIC algorithm for surveillance in wireless sensor network ," IEEE Trans. Antennas Propag., Vol. 60, No. 1, 220-230, Jan. 2012.
    doi:10.1109/TAP.2011.2167903

    17. Lehmana, S. K. and A. J. Devaney, "Transmission mode time-reversal super-resolution imaging," J. Acoust. Soc. Am., Vol. 113, No. 5, 2742-2753, May 2003.
    doi:10.1121/1.1566975

    18. Strang, G., Introduction to Linear Algebra, 3rd Ed., Wellesley-Cambridge Press, 2003.

    19. Trefethen, L. N. and D. Bau, Numerical Linear Algebra, The Society of Industrial and Applied Mathematics, 1997.

    20. Marengo, E. A. and F. K. Gruber, "Subspace-based localization and inverse scattering of multiply scattering point targets," EURASIP Journal on Advances in Signal Processing, Vol. 2007, Article ID 17342, 2007, doi:10.1155/2007/17342.