Progress In Electromagnetics Research B
ISSN: 1937-6472
Home | Search | Notification | Authors | Submission | PIERS Home | EM Academy
Home > Vol. 47 > pp. 127-144


By A. S. Shalin and S. A. Nikitov

Full Article PDF (558 KB)

In this work we investigate the effect of broadband antireflection of a medium by a layer of embedded nano-cavities arranged near the surface. It is shown that this structure is versatile and allows near 100% transmittance in a wide spectral range practically for any dielectric material. The approximate model of nano-structured layer is suggested that allows to determine the parameters of the system necessary for achieving antireflection of any a priori given media without complicated numerical calculations. The transmission spectrum of a medium modified by such a structure is entirely defined by a radius and a depth of bedding of the nano-porous layer.

A. S. Shalin and S. A. Nikitov, "Approximate Model for Universal Broadband Antireflection Nano-Structure," Progress In Electromagnetics Research B, Vol. 47, 127-144, 2013.

1. Visimax Technologies, Twinsburg, Ohio, http://visimaxtechnologies.com/anti-reflection-visiclear/.

2. Walheim, S., E. Schaffer, J. Mlynek, and U. Steiner, "Nanophase-separated polymer films as high-performance antireflection coatings," Science, Vol. 283, 520-522, 1999.

3. Lalanne, P. and G. M. Morris, "Antireflection behavior of silicon subwavelength periodic structures for visible light," Nanotechnology, Vol. 8, 53-56, 1997.

4. Koenig, G. A. and N. G. Niejelow, United States Patent No: US 7,311,938 B2, Dec. 25, 2007.

5. Raut, H. K., V. A. Ganesh, A. S. Nairb, and S. Ramakrishna, "Anti-reflective coatings: A critical, in-depth review," Energy Environ. Sci., Vol. 4, 3779-3804, 2011.

6. Her, T.-H., R. J. Finaly, C. Wu, S. Delivala, and E. Mazur, "Microstructuring of silicon with femtosecond laser pulses," Appl. Phys. Lett., Vol. 73, 1673-1675, 1998.

7. Chen, Y. W., P. Y. Han, and X.-C. Zhang, "Tunable broadband anti-reflection structures for silicon at terahertz frequency," Appl. Phys. Lett., Vol. 94, 041106, 2009.

8. Zhang, F., L. Yang, Y. Jin, and S. He, "Turn a highly-reflective metal into an omnidirectional broadband absorber by coating a purely-dielectric thin layer of grating," Progress In Electromagnetics Research, Vol. 134, 95-109, 2013.

9. Oliveira, P. W., H. Krug, A. Frantzen, M. Mennig, and H. K. Schmidt, Sol-Gel Optics IV, B. S. Dunn, J. D. Mackenzie, E. J. A. Pope, H. K. Schmidt, M. Yamane, Eds., SPIE, San Diego, CA, 1997.

10. Pegon, P. M., C. V. Germain, Y. R. Rorato, P. F. Belleville, and E. Lavastre, "Large-area sol-gel optical coatings for the Megajoule Laser prototype," Proc. SPIE, Vol. 5250, 170-181, 2004.

11. Krogman, K. C., T. Druffel, and M. K. Sunkara, "Anti-reflective optical coatings incorporating nanoparticles," Nanotechnology, Vol. 16, No. 7, S338-S343, 2005.

12. Kajorndejnukul, V., S. Sukhov, D. Haefner, A. Dogariu, and G. Agarwal, "Surface induced anisotropy of metal-dielectric composites and the anomalous spin Hall effect," Opt. Lett., Vol. 37, 3036, 2012.

13. Xi, J.-Q., M. F. Schubert, J. K. Kim, E. F. Schubert, M. Chen, S.-Y. Lin, W. Liu, and J. A. Smar, "Optical thin-film materials with low refractive index for broadband elimination of Fresnel reflection ," Nature Photonics, Vol. 1, 176-179, 2007.

14. Garcia-Vidal, F. J., "Metamaterials: Towards the dark side," Nature Photonics, Vol. 2, 215-216, 2008.

15. Wu, Z., J. Walish, A. Nolte, L. Zhai, R. E. Cohen, and M. F. Rubner, "Deformable antireflection coatings from polymer and nanoparticle multilayers," Adv. Mater., Vol. 18, 2699, 2006.

16. Song, Y. M., E. S. Choi, J. S. Yu, and Y. T. Lee, "Light-extraction enhancement of red AlGaInP light-emitting diodes with antireflective subwavelength structures," Opt. Express, Vol. 17, 20991-20997, 2009.

17. Yu, P., C.-H. Chang, C.-H. Chiu, C.-S. Yang, J.-C. Yu, H.-C. Kuo, S.-H. Hsu, and Y.-C. Chang, "Efficiency enhancement of GaAs photovoltaics employing antireflective indium tin Oxide nanocolumns," Adv. Mater., Vol. 21, 1618-1621, 2009.

18. Shalin, A. S., "Broadband blooming of a medium modified by an incorporated layer of nanocavities," JETP Lett., Vol. 91, 636-642, 2010.

19. Shalin, A. S., "Optical antireflection of a medium by nanocrystal layers," Quantum Electronics, Vol. 41, No. 2, 163-169, 2011.

20. Shalin, A. S., "Optical properties of nanocrystal layers embedded in a carrier medium," Journal of Communications Technology and Electronics, Vol. 56, No. 1, 14-26, 2011.

21. Shalin, A. S., "Optical antireflection of a medium by nanostructural layers," Progress In Electromagnetic Research B, Vol. 31, 45-66, 2011.

22. Song, Y. M., H. J. Choi, J. S. Yu, and Y. T. Lee, "Design of highly transparent glasses with broadband antireflective subwavelength structures," Optics Express, Vol. 18, No. 12, 13063, 2010.

23. Rother, T. and K. Schmidt, "The discretized mie-formalism for electromagnetic scattering," Progress In Electromagnetics Research, Vol. 17, 91-183, 1997.

24. Born, M. and E. Wolf, Principles of Optics, Pergamon, Oxford, 1969.

25. Khlebtsov, N. G., "Optics and biophotonics of nanoparticles with a plasmon resonance," Quantum Electronics, Vol. 38, No. 6, 504-529, 2008.

26. Shalin, A. S., "Microscopic theory of optical properties of composite media with chaotically distributed nanoparticles," Quantum Electronics, Vol. 40, No. 11, 1004-1011, 2010.

27. Xi, J.-Q., J. K. Kim, E. F. Schubert, D. Ye, T.-M. Lu, S.-Y. Lin, and S. Juneja Jasbir, "Very low-refractive-index optical thin films consisting of an array of SiO2 nanorods," Opt. Lett., Vol. 31, No. 5, 601-603, 2006.

© Copyright 2010 EMW Publishing. All Rights Reserved