Vol. 47
Latest Volume
All Volumes
PIERB 105 [2024] PIERB 104 [2024] PIERB 103 [2023] PIERB 102 [2023] PIERB 101 [2023] PIERB 100 [2023] PIERB 99 [2023] PIERB 98 [2023] PIERB 97 [2022] PIERB 96 [2022] PIERB 95 [2022] PIERB 94 [2021] PIERB 93 [2021] PIERB 92 [2021] PIERB 91 [2021] PIERB 90 [2021] PIERB 89 [2020] PIERB 88 [2020] PIERB 87 [2020] PIERB 86 [2020] PIERB 85 [2019] PIERB 84 [2019] PIERB 83 [2019] PIERB 82 [2018] PIERB 81 [2018] PIERB 80 [2018] PIERB 79 [2017] PIERB 78 [2017] PIERB 77 [2017] PIERB 76 [2017] PIERB 75 [2017] PIERB 74 [2017] PIERB 73 [2017] PIERB 72 [2017] PIERB 71 [2016] PIERB 70 [2016] PIERB 69 [2016] PIERB 68 [2016] PIERB 67 [2016] PIERB 66 [2016] PIERB 65 [2016] PIERB 64 [2015] PIERB 63 [2015] PIERB 62 [2015] PIERB 61 [2014] PIERB 60 [2014] PIERB 59 [2014] PIERB 58 [2014] PIERB 57 [2014] PIERB 56 [2013] PIERB 55 [2013] PIERB 54 [2013] PIERB 53 [2013] PIERB 52 [2013] PIERB 51 [2013] PIERB 50 [2013] PIERB 49 [2013] PIERB 48 [2013] PIERB 47 [2013] PIERB 46 [2013] PIERB 45 [2012] PIERB 44 [2012] PIERB 43 [2012] PIERB 42 [2012] PIERB 41 [2012] PIERB 40 [2012] PIERB 39 [2012] PIERB 38 [2012] PIERB 37 [2012] PIERB 36 [2012] PIERB 35 [2011] PIERB 34 [2011] PIERB 33 [2011] PIERB 32 [2011] PIERB 31 [2011] PIERB 30 [2011] PIERB 29 [2011] PIERB 28 [2011] PIERB 27 [2011] PIERB 26 [2010] PIERB 25 [2010] PIERB 24 [2010] PIERB 23 [2010] PIERB 22 [2010] PIERB 21 [2010] PIERB 20 [2010] PIERB 19 [2010] PIERB 18 [2009] PIERB 17 [2009] PIERB 16 [2009] PIERB 15 [2009] PIERB 14 [2009] PIERB 13 [2009] PIERB 12 [2009] PIERB 11 [2009] PIERB 10 [2008] PIERB 9 [2008] PIERB 8 [2008] PIERB 7 [2008] PIERB 6 [2008] PIERB 5 [2008] PIERB 4 [2008] PIERB 3 [2008] PIERB 2 [2008] PIERB 1 [2008]
2012-12-12
On the Simplification of the Modeling of Electron-Cyclotron Wave Propagation in Thermonuclear Fusion Plasmas
By
Progress In Electromagnetics Research B, Vol. 47, 37-61, 2013
Abstract
The launching of high-frequency electromagnetic waves into fusion plasmas is an effective method for plasma heating and noninductive current drive. In addition, the reflection of electromagnetic waves on the plasma cutoffs is utilized in electron density diagnostic measurements. The scope of this article is to comment on the standard approximations made in the simulation of electron-cyclotron wave propagation and absorption in tokamak plasmas, in connection to the established modeling tools and the underlying physics, as well as to illustrate the limits of their validity, especially regarding the applicability to ITER-related studies and beyond. The identification of possible gaps in the current state-of-the-art and the implication of new requirements for theory and modeling are also discussed.
Citation
Christos Tsironis, "On the Simplification of the Modeling of Electron-Cyclotron Wave Propagation in Thermonuclear Fusion Plasmas," Progress In Electromagnetics Research B, Vol. 47, 37-61, 2013.
doi:10.2528/PIERB12102911
References

1. Erckmann, V. and U. Gasparino, "Electron cyclotron resonance heating and current drive in toroidal fusion plasmas," Plasma Phys. Control. Fusion, Vol. 36, No. 12, 1869-1962, 1994.
doi:10.1088/0741-3335/36/12/001

2. Prater, R., "Heating and current drive by electron-cyclotron waves," Phys. Plasmas, Vol. 11, No. 5, 2349-2376, 2004.
doi:10.1063/1.1690762

3. Stix, T. H., Waves in Plasmas, Springer-Verlag, New York, 1992.

4. La Haye, R. J., "Neoclassical tearing modes and their control," Phys. Plasmas, Vol. 13, No. 6, Art. 055501, 2006.

5. Wesson, J., Tokamaks, Oxford University Press, New York, 2004.

6. Swanson, D. G., Plasma Waves, Taylor-Francis, New York, 2003.

7. Pinches, S. D., The HAGIS Self-consistent Nonlinear Wave-particle Interaction Models, UKAEA Fusion, Culham, 1998.

8. Tsironis, C. and L. Vlahos, "Effect of nonlinear wave-particle interaction on electron-cyclotron absorption," Plasma Phys. Control. Fusion, Vol. 48, No. 9, 1297-1310, 2006.
doi:10.1088/0741-3335/48/9/003

9. Kline, M. and I. W. Kay, Electromagnetic Theory and Geometrical Optics, Interscience, New York, 1965.

10. Friedland, L. and I. B. Bernstein, "General geometric optics formalism in plasmas," IEEE Trans. Plasma Sci., Vol. 8, No. 2, 90-95, 1980.
doi:10.1109/TPS.1980.4317277

11. Kravtsov, Y. I. and Y. A. Orlov, Geometrical Optics of Inhomogeneous Media, Springer-Verlag, Berlin, 1990.

12. Mazzucato, E., "Propagation of Gaussian beam in inhomogeneous plasma," Phys. Fluids B, Vol. 1, No. 9, 1855-1860, 1989.
doi:10.1063/1.858917

13. Nowak, S. and A. Orefice, "Three-dimensional propagation and absorption of high frequency Gaussian beams in magnetoactive plasmas," Phys. Plasmas, Vol. 1, No. 5, 1242-1250, 1994.
doi:10.1063/1.870721

14. Pereverzev, G. V., "Beam tracing in inhomogeneous anisotropic plasma," Phys. Plasmas, Vol. 5, No. 10, 3529-3541, 1998.
doi:10.1063/1.873070

15. Taflove, A., Computational Electrodynamics: The Finite-difference Tiem-domain Method, Artech House, London, 2000.

16. Tsironis, C., T. Samaras, and L. Vlahos, "Scattered-field FDTD algorithm for hot anisotropic plasma with application to electron-cyclotron heating," IEEE Trans. Ant. Prop., Vol. 56, No. 9, 2988-2994, 2008.
doi:10.1109/TAP.2008.928774

17. Koehn, A., A. Cappa, E. Holzhauer, F. Castejon, A. Fernandez, and U. Stroth, "Full-wave calculation of the O-X-B mode conversion of Gaussian beams in a cylindrical plasma," Plasma Phys. Control. Fusion, Vol. 50, No. 8, Art. 085018, 2008.

18. Kamendje, R., S. V. Kasilov, W. Kernbichler, and M. F. Heyn, "Kinetic modeling of nonlinear electron cyclotron resonance heating," Phys. Plasmas, Vol. 10, No. 1, 75-97, 2003.
doi:10.1063/1.1525796

19. Isliker, H., I. Chatziantonaki, C. Tsironis, and L. Vlahos, "Electron-cyclotron wave propagation, absorption and current drive in the presence of neoclassical tearing modes," Plasma Phys. Control. Fusion, Vol. 54, No. 9, Art. 095005, 2012.

20. Ayten, B. and E. Westerhof, "Consequences of plasma rotation for neoclassical tearing mode suppression by electron cyclotron current drive," Phys. Plasmas, Vol. 18, No. 9, Art. 092506, 2012.

21. Westerhof, E., Implementation of TORAY at JET, Rijnhuizen Report 89-183, Eindhoven, 1989.

22. Poli, E., A. G. Peeters, and G. V. Pereverzev, "TORBEAM, a beam tracing code for electron-cyclotron waves in tokamak plasmas," Comput. Phys. Commun., Vol. 136, No. 1, 90-104, 2001.
doi:10.1016/S0010-4655(01)00146-1

23. Farina, D., "Quasi-optical propagation of an EC Gaussian beam, absorption and current drive in tokamaks," AIP Conf. Proc., Vol. 871, 77-86, 2006.

24. Lloyd, B., "Overview of ECRH experimental results," Plasma Phys. Control. Fusion, Vol. 40, No. 4, A119-A138, 1998.
doi:10.1088/0741-3335/40/8A/010

25. Tsironis, C., E. Poli, and G. V. Pereverzev, "Beam tracing description of non-Gaussian wave beams," Phys. Plasmas, Vol. 13, Art. 113304, 2006.

26. Goldston, R. J. and P. H. Rutherford, Introduction to Plasma Physics, IoP Publishing, Boston, 1995.

27. Maj, O., G. V. Pereverzev, and E. Poli, "Validation of the paraxial beam-tracing method in critical cases," Phys. Plasmas, Vol. 16, Art. 062105, 2009.

28. Tsironis, C., A. G. Peeters, H. Isliker, D. Strintzi, I. Chatziantonaki, and L. Vlahos, "EC wave scattering by edge density fluctuations in ITER," Phys. Plasmas, Vol. 16, Art. 112510, 2009.

29. Brunner, S. and J. Vaclavik, "Dielectric tensor operator of hot plasmas in toroidal axisymmetric systems," Phys. Fluids B, Vol. 5, No. 6, 1695-1705, 1992.
doi:10.1063/1.860804

30. Kominis, Y., A. K. Ram, and K. Hizanidis, "Distribution functions of wave-particle interactions in plasmas," Phys. Rev. Lett., Vol. 104, No. 8, 23-26, 2010.

31. Westerhof, E., "Propagation through an EC resonance layer," Plasma Phys. Control. Fusion, Vol. 39, No. 6, 1015-1029, 1997.

32. Ram, A. K. and J. Decker, "Relativistic effects in electron cyclotron resonance heating and current drive," Proc. 35th EPS Conference, Art. 1-097, 2008.

33. Farina, D., "Relativistic dispersion relation of electron cyclotron waves," Fus. Sci. Tech., Vol. 53, No. 1, 130-138, 2008.

34. Poli, E., E. Fable, G. Tardini, H. Zohm, D. Farina, L. Figini, N. B. Marushchenko, and L. Porte, "Assessment of ECCD-assisted operation in DEMO," Proc. EC-17, Art. 01005, 2012.

35. Sirenko, K., V. Pazynin, Y. K. Sirenko, and H. Bagci, "An FFT-accelerated FDTD scheme with exact absorbing conditions for characterizing axially symmetric resonant structures," Progress In Electromagnetics Research, Vol. 111, 331-364, 2011.