PIER B
 
Progress In Electromagnetics Research B
ISSN: 1937-6472
Home | Search | Notification | Authors | Submission | PIERS Home | EM Academy
Home > Vol. 48 > pp. 77-98

DISPERSION DIAGRAM ANALYSIS OF ARRAYS OF MULTISHELL MULTIMATERIAL NANOSPHERES

By M. Rostami, D. Ansari Oghol Beig, and H. Mosallaei

Full Article PDF (698 KB)

Abstract:
In this paper, the characteristics of electromagnetic waves supported by three dimensional (3-D) periodic arrays of multilayer multimaterial spheres are theoretically investigated. The spherical particles have the potential to offer electric and magnetic dipole modes, where their novel arrangements engineer the desired metamaterial performance. Multilayer spheres are designed for controlling both electric and magnetic Mie scattering resonances around the same spectrum. A full wave spherical modal formulation is applied to express the electromagnetic fields in terms of the electric and magnetic multipole modes. Imposing boundary conditions will determine the required equations for obtaining dispersion characteristics ωa/2πc-ka/2π. A metamaterial constructed from unit-cells of multilayer multimaterial sphere is created. It is demonstrated such compositions can exhibit negative-slope dispersion diagram metamaterial properties in frequency spectrums of interest, where both electric and magnetic Mie scattering resonances occur. Different coatings such as silver, gold, indium-tin-oxide (ITO), Al:ZnO, (AZO) and Ga:ZnO (GZO) are used and the operating range and the losses of the resulting metamaterials are compared. It is presented that by adding the third layer to the core-shell structure, due to increased degrees of freedom, the metamaterials operation range will be tunable to the desired frequency.

Citation:
M. Rostami, D. Ansari Oghol Beig, and H. Mosallaei, "Dispersion Diagram Analysis of Arrays of Multishell Multimaterial Nanospheres," Progress In Electromagnetics Research B, Vol. 48, 77-98, 2013.
doi:10.2528/PIERB12111706

References:
1. Engheta, N. and R. W. Ziolkowski, Metamaterials: Physics and Engineering Explorations, Wiley, New York, 2006.
doi:10.1002/0471784192

2. Engheta, N. and R. W. Ziolkowski, "A positive future for double-negative metamaterials," IEEE Trans. Microwave Theory Tech., Vol. 53, No. 4, 1535-1556, 2005.
doi:10.1109/TMTT.2005.845188

3. Pendry, J. B., "Negative refraction makes a perfect lens," Phys. Rev. Lett., Vol. 85, 3966, 2000.
doi:10.1103/PhysRevLett.85.3966

4. Fang, N., H. Lee, C. Sun, and X. Zhang, "Sub-diffraction-limited optical imaging with a silver superlens," Science, Vol. 308, 534-537, 2005.
doi:10.1126/science.1108759

5. Luo, C., S. G. Johnson, J. D. Joannopoulos, and J. B. Pendry, "Subwavelength imaging in photonic crystals," Phys. Rev. B, Vol. 68, 045115, 2003.
doi:10.1103/PhysRevB.68.045115

6. Ghadarghadr, S. and H. Mosallaei, "Dispersion diagram characteristics of periodic array of dielectric and magnetic materials based spheres," IEEE Trans. Antennas Propag., Vol. 57, No. 1, 149-160, 2009.
doi:10.1109/TAP.2008.2009725

7. Ghadarghadr, S. and H. Mosallaei, "Coupled dielectric nanoparticles manipulating metamaterials optical characteristics," IEEE Trans. Nanotechnol., Vol. 8, No. 5, 582-594, 2009.
doi:10.1109/TNANO.2009.2013619

8. Ahmadi, A. and H. Mosallaei, "Physical configuration and performance modeling of all-dielectric metamaterials," Phys. Rev. B, Vol. 77, 045104, 2008.
doi:10.1103/PhysRevB.77.045104

9. Alam, M. and Y. Massoud, "A closed-form analytical model for singlenanoshells," IEEE Trans. Nanotechnol., Vol. 5, No. 3, 265-272, May 2006.
doi:10.1109/TNANO.2006.874050

10. Alam, M. and Y. Massoud, "RLC ladder model for scattering in singlemetallic nanoparticles," IEEE Trans. Nanotechnol., Vol. 5, No. 5, 491-498, Sep. 2006.
doi:10.1109/TNANO.2006.880403

11. Startton, J. A., Electromagnetic Theory, McGraw Hill, New York, 1941.

12. Vendik, O. G. and M. S. Gashinova, "Artificial double negative (DNG) media composed of two different dielectric sphere lattices embedded in a dielectric matrix," 4th Eur. Microw. Conf., 1209-1212, 2004.

13. Vendik, I. B., O. G. Vendik, and M. S. Gashinova, "Artificial dielectric medium possessing simultaneously negative permittivity and magnetic permeability," Tech. Phys. Lett., Vol. 32, No. 5, 429-433, 2006.
doi:10.1134/S106378500605018X

14. Boltasseva, A. and H. A. Atwater, "Low-loss plasmonic metamaterials," Science, Vol. 331, No. 6015, 290-291, 2011.
doi:10.1126/science.1198258

15. Jackson, J. D., Classical Electrodynamics, Wiley, New York, 1999.

16. Yang, W., "Improved recursive algorithm for light scattering by a multilayered sphere," Applied Optics, Vol. 42, No. 9, 1711-1720, 2003.
doi:10.1364/AO.42.001710

17. Bohren, C. F. and D. R. Huffman, Absorption and Scattering of Light by Small Particles, Wiley, New York, 1998.
doi:10.1002/9783527618156

18. Chew, W. C., Waves and Fields in Inhomogeneous Media, IEEE Press, 1995.

19. Wheeler, M. S., J. S. Aitchison, and M. Mojahedi, "Coated nonmagnetic spheres with a negative index of refraction at infrared frequencies," Phys. Rev. B, Vol. 73, 045105, 2006.
doi:10.1103/PhysRevB.73.045105

20. Shore, R. A. and A. D. Yaghjian, "Traveling electromagnetic waves on linear periodic arrays of lossless spheres," Electronics Letters, Vol. 41, 578-580, 2005.
doi:10.1049/el:20058372

21. Shore, R. A. and A. D. Yaghjian, "Traveling waves on two- and three-dimensional periodic arrays of lossless scatterers," Radio Sci., Vol. 42, No. 6, 2007, Doi:10.1029/2007RS003647.
doi:10.1029/2007RS003647

22. Alu, A., M. E. Young, and N. Engheta, "Design of nonofilters for optical nanocircuits," Phys. Rev. B, Vol. 77, 144107, 2008.
doi:10.1103/PhysRevB.77.144107

23. Li, W. R., X. B. Xie, Q. S. Shi, H. Y. Zeng, Y. S. Ouyang, and Y. B. Chen, "Antibacterial activity and mechanism of silver nanoparticles on Escherichia coli," Appl. Microbiol. Biotechnol., Vol. 85, No. 4, 1115-1122, 2010.
doi:10.1007/s00253-009-2159-5

24. Naik, G. V., J. Kim, and A. Boltasseva, "Oxides and nitrides as alternative plasmonic materials in the optical range," Optical Materials Express, Vol. 1, No. 6, 1090-1099, 2011.
doi:10.1364/OME.1.001090

25. Kim, H., J. S. Horwitz, A. Pique, C. M. Gilmore, and D. B. Chrisey, "Electrical and optical properties of indium tin oxide thin ¯lms grown by pulsed laser deposition," Appl. Phys. A, Vol. 69, S447-S450, 1999.
doi:10.1007/s003390051435

26. Mondal, S., K. P. Kanta, and P. Mitra, "Preparation of Al-doped ZnO (AZO) thin film by SILAR," Journal229 of Physical Sciences,, Vol. 12, 221-229, 2008.


© Copyright 2010 EMW Publishing. All Rights Reserved