Vol. 48

Latest Volume
All Volumes
All Issues
2013-01-26

Electromagnetic Shielding Features in Lightweight PVDF-Aluminum Based Nanocomposites

By Javier Arranz-Andres, Nuria Pulido-Gonzalez, Pilar Marín, Ana M. Aragon, and Maria L. Cerrada
Progress In Electromagnetics Research B, Vol. 48, 175-196, 2013
doi:10.2528/PIERB12121109

Abstract

Dependence of the electromagnetic shielding effectiveness on filler volume fraction has been investigated from attenuation upon reflection measurements over a broad frequency range in hybrids based on Poly(vinylidene fluoride)-Aluminum nanoparticles. The loss of reflectivity with relation to the incident radiation in these nanocomposites compared with the pristine polymeric matrix shows the maximum value for the sample with an aluminum content of 10% in volume. Furthermore, the morphological aspects of all the specimens as well as their thermal properties, viscoelastic behavior and dielectric response have been evaluated. The nanocomposite that incorporates an Al content of 10% in volume exhibits the best balance in properties including, in addition to its shielding behavior, its processability and mechanical performance.

Citation


Javier Arranz-Andres, Nuria Pulido-Gonzalez, Pilar Marín, Ana M. Aragon, and Maria L. Cerrada, "Electromagnetic Shielding Features in Lightweight PVDF-Aluminum Based Nanocomposites," Progress In Electromagnetics Research B, Vol. 48, 175-196, 2013.
doi:10.2528/PIERB12121109
http://www.jpier.org/PIERB/pier.php?paper=12121109

References


    1. Valente Jr., W., M. H. Amaral, and A. Raizer, "EMC management: How to compare electromagnetic environmental measurements and equipment immunity levels," Progress In Electromagnetics Research Letters, Vol. 18, 165-177, 2010.
    doi:10.2528/PIERL10092011

    2. Chung, D. D. L., "Materials for electromagnetic interference shielding," J. Mater. Eng. Perform., Vol. 9, 350-354, 2000.
    doi:10.1361/105994900770346042

    3. Afsar, M. N., J. R. Birch, R. N. Clarke, and G. W. Chantry, "Measurement of the properties of materials," Proceedings of the IEEE, Vol. 74, 183-199, 1986.
    doi:10.1109/PROC.1986.13432

    4. Knott, E. F., J. F. Shaffer, and M. T. Tuley, Radar Cross Section, Artech House, 2004.

    5. Wu, G., X. Huang, Z. Dou, S. Chen, and L. Jiang, "Electromagnetic interfering shielding of aluminum alloy-cenospheres composite," Journal of Materials Science, Vol. 42, 2633-2636, 2007.
    doi:10.1007/s10853-006-1347-2

    6. Wu, G., X. G. Zhang, Z. Q. Song, and B. Liu, "Analysis on shielding performance of metallic rectangular cascaded enclosure with apertures," Progress In Electromagnetics Research Letters, Vol. 20, 185-195, 2011.

    7. Lei, J. Z., C. H. Liang, and Y. Zhang, "Study on shielding effectiveness of metallic cavities with apertures by combining parallel FDTD method with windowing technique," Progress In Electromagnetics Research, Vol. 74, 85-112, 2007.
    doi:10.2528/PIER07041905

    8. Gorriti, A. G., P. Marin, D. Cortina, and A. Hernando, "Microwave attenuation with composite of copper microwires," Journal of Magnetism and Magnetic Materials, Vol. 322, 1505-1510, 2010.
    doi:10.1016/j.jmmm.2009.07.085

    9. Marin, P., D. Cortina, and A. Hernando, "Electromagnetic wave absorbing material based on magnetic microwires," IEEE Transactions on Magnetics, Vol. 44, 3934-3937, 2008.
    doi:10.1109/TMAG.2008.2002472

    10. Marin, P., D. Cortina, and A. Hernando, "High-frequency behavior of amorphous microwires and its applications," Journal of Magnetism and Magnetic Materials, 290-291, Part 2, 1597-1600, 2005.

    11. Wang, Y. and X. Jing, "Intrinsically conducting polymers for electromagnetic interference shielding," Polymers for Advanced Technologies, Vol. 16, 344-351, 2005.
    doi:10.1002/pat.589

    12. Das, N. C., T. K. Chaki, D. Khastgir, and A. Chakraborty, "Electromagnetic interference shielding effectiveness of ethylene vinyl acetate based conductive composites containing carbon fillers," Journal of Applied Polymer Science, Vol. 80, 1601-1608, 2001.
    doi:10.1002/app.1253

    13. Morari, C., I. Balan, J. Pintea, E. Chitanu, and I. Iordache, "Electrical conductivity and electromagnetic shielding effectiveness of silicone rubber filled with ferrite and graphite powders," Progress In Electromagnetics Research M, Vol. 21, 93-104, 2011.
    doi:10.2528/PIERM11080406

    14. Koledintseva, M. Y., J. Drewniak, R. DuBroff, K. Rozanov, and B. Archambeault, "Modeling of shielding composite materials and structures for microwave frequencies," Progress In Electromagnetics Research B, Vol. 15, 197-215, 2009.
    doi:10.2528/PIERB09050410

    15. Raj, C. D., G. S. Rao, P. V. Y. Jayasree, B. Srinu, and P. Lakshman, "Estimation of reflectivity and shielding effectiveness of three layered laminate electromagnetic shield at X-band," Progress In Electromagnetics Research B, Vol. 20, 205-223, 2010.
    doi:10.2528/PIERB10030402

    16. Jayasree, P. V. Y., V. S. S. N. Srinivasa Baba, B. Prabhakara Rao, and P. Lakshman, "Analysis of shielding effectiveness of single double and laminated shields for oblique incidence of EM waves," Progress In Electromagnetics Research B, Vol. 22, 187-202, 2010.
    doi:10.2528/PIERB10051305

    17. Danaei, M. M., H. Aliakbarian, M. Azarbadegan, and Y. Bairami, "Protection of car-size sensitive equipments using a shielding cover," Progress In Electromagnetics Research M, Vol. 7, 97-108, 2009.
    doi:10.2528/PIERM09031910

    18. Qureshi, A., A. Mergen, M. S. Eroglu, N. L. Singh, and A. Gulluoglu, "Dielectric properties of polymer composites filled with different metals," Journal of Macromolecular Science, Part A: Pure and Applied Chemistry, Vol. 45, 462-469, 2008.
    doi:10.1080/10601320801977756

    19. Teirikangas, M., J. Juuti, and H. Jantunen, "Organic-inorganic RF composites with enhanced permittivity by nanoparticle additions," Progress In Electromagnetics Research, Vol. 115, 147-157, 2011.

    20. Arranz-Andres, J. , E. Perez, and M. L. Cerrada, "Hybrids based on poly (vinylidene fluoride) and Cu nanoparticles: Characterization and EMI shielding," European Polymer Journal,, Vol. 48, 1160-1168, 2012.
    doi:10.1016/j.eurpolymj.2012.04.006

    21. Nalva, H. S., Ferroelectric Polymers, Marcel Dekker Inc., New York, 1955.

    22. Nagai, M., K. Nakamura, H. Uehara, T. Kanamoto, Y. Takahashi, and T. Furukawa, "Enhanced electrical properties of highly oriented poly (vinylidene fluoride) films prepared by solid-state coextrusion," Journal of Polymer Science --- Part B: Polymer Physics, Vol. 37, 2549-2556, 1999.
    doi:10.1002/(SICI)1099-0488(19990915)37:18<2549::AID-POLB1>3.0.CO;2-S

    23. Strashilov, V. L., "Efficiency of poly (vinylidene fluoride) thin films for excitation of surface acoustic waves," Journal of Applied Physics, Vol. 88, 3582-3586, 2000.
    doi:10.1063/1.1288226

    24. Kepler, R. G. and R. A. Anderson, "Ferroelectric polymers," Advances in Physics, Vol. 41, 1-57, 1992.
    doi:10.1080/00018739200101463

    25. Kepler, R. G., Ferroelectric Polymers: Chemistry, Physics and Applications, Marcel Dekker, New York, 1995.

    26. Tashiro, K., Ferroelectric Polymers: Chemistry, Physics and Applications, Marcel Dekker, New York, 1995.

    27. Matsushige, K., "Pressure effect on phase transition in ferroelectic polymers," Phase Transitions, Vol. 18, 247-262, 1989.
    doi:10.1080/01411598908206865

    28. Scheinbeim, J., C. Nakafuku, B. A. Newman, and K. D. Pae, "High-pressure crystallization of poly (vinylidene fluoride)," Journal of Applied Physics, Vol. 50, 4399-4405, 1979.
    doi:10.1063/1.326429

    29. Wang, X. C. and Z. Liu, "A new computation of shielding effectiveness of electromagnetic radiation shielding fabric," Progress In Electromagnetics Research Letters, Vol. 33, 177-186, 2012.

    30. Lucyszyn, S. and Y. Zhou, "Characterising room temperature THz metal shielding using the engineering approach," Progress In Electromagnetics Research, Vol. 103, 17-31, 2010.
    doi:10.2528/PIER10030801

    31. McCrum, N. G., B. E. Read, and G. Williams, Anelastic and Dielectric Effects in Polymeric Solids, Dover, New York, 1991.

    32. Nakagawa, K. and Y. Ishida, "Annealing effects in poly (vinylidene °uoride) as revealed by specific volume measurements, differential scanning calorimetry, and electron microscopy," Journal of Polymer Science --- Part B: Polymer Physics, Vol. 11, 2153-2171, 1973.
    doi:10.1002/pol.1973.180111107

    33. Lovinger, A. J., Developments in Crystalline Polymers-I, Applied Science Publishers, London, 1982.

    34. Xu, J. and C. P. Wong, "Low-loss percolative dielectric composite," Applied Physics Letters, Vol. 87, 2005.

    35. Chanmal, C. V. and J. P. Jog, "Dielectric relaxations in PVDF/BaTiO3 nanocomposites," Express Polymer Letters, Vol. 2, 294-301, 2008.
    doi:10.3144/expresspolymlett.2008.35

    36. Linares, A., A. Nogales, D. R. Rueda, and T. A. Ezquerra, "Molecular dynamics in PVDF/PVA blends as revealed by dielectric loss spectroscopy," Journal of Polymer Science --- Part B: Polymer Physics, Vol. 45, 1653-1661, 2007.
    doi:10.1002/polb.21210

    37. Takahashi, Y. and K. Miyaji, "Long-range order parameters of form II of poly (vinylidene fluoride) and molecular motion in the I +- c relaxation," Macromolecules, Vol. 16, 1789-1792, 1983.
    doi:10.1021/ma00245a019

    38. Boyd, R. H., "Relaxation processes in crystalline polymers: Experimental behaviour --- A review," Polymer, Vol. 26, 323-347, 1985.
    doi:10.1016/0032-3861(85)90192-2

    39. Boyd, R. H., "Relaxation processes in crystalline polymers: Molecular interpretation --- A review," Polymer, Vol. 26, 1123-1133, 1985.
    doi:10.1016/0032-3861(85)90240-X

    40. Tian, L. Y., X. B. Huang, X. Z. Tang, and , "Study on morphology behavior of PVDF-based electrolytes," Journal of Applied Polymer Science, Vol. 92, 3839-3842, 2004.
    doi:10.1002/app.20402

    41. Kochervinskii, V. V., I. A. Malyshkina, G. V. Markin, N. D. Gavrilova, N. P. Bessonova, and , "Dielectric relaxation in vinylidene fluoride-hexafluoropropylene copolymers," Journal of Applied Polymer Science, Vol. 105, 1101-1117, 2007.
    doi:10.1002/app.26145

    42. Panwar, V., J. O. Park, S. H. Park, S. Kumar, and R. M. Mehra, "Electrical, dielectric, and electromagnetic shielding properties of polypropylene-graphite composites," Journal of Applied Polymer Science, Vol. 115, 1306-1314, 2010.
    doi:10.1002/app.29702

    43. Yano, S., "Dielectric relaxation and molecular motion in poly (vinylidene fluoride)," Journal of Polymer Science --- Part A-2: Polym. Chem., Vol. 8, 1057-1072, 1970.
    doi:10.1002/pol.1970.160080704

    44. Lovinger, A. J. and T. T. Wang, "Investigation of the properties of directionally solidified poly (vinylidene fluoride)," Polymer, Vol. 20, 725-732, 1979.
    doi:10.1016/0032-3861(79)90247-7

    45. O'Shea, M. L., C. Morterra, and M. J. D. Low, "Spectroscopic studies of carbons. XVII. Pyrolysis of polyvinylidene fluoride," Materials Chemistry and Physics, Vol. 26, 193-209, 1990.
    doi:10.1016/0254-0584(90)90038-C

    46. Zulfiqar, S., M. Zulfiqar, M. Rizvi, A. Munir, and I. C. McNeill, "Study of the thermal degradation of polychlorotrifluoroethylene, poly (vinylidene fluoride) and copolymers of chlorotrifluoroethy lene and vinylidene fluoride-," Polymer Degradation and Stability, Vol. 43, 423-430, 1994.
    doi:10.1016/0141-3910(94)90015-9

    47. Botelho, G., S. Lanceros-Mendez, A. M. Goncalves, V. Sencadas, and J. G. Rocha, "Relationship between processing conditions, defects and thermal degradation of poly (vinylidene fluoride) in the β-phase," Journal of Non-Crystalline Solids, Vol. 354, 72-78, 2008.
    doi:10.1016/j.jnoncrysol.2007.07.012

    48. Kang, D. J., K. Pal, D. S. Bang, and J. K. Kim, "Synergistic effect on crystalline structure of polyvinylidene fluoride nanocomposites with multiwalled carbon nanotube loading by a twin screw extruder," Journal of Applied Polymer Science, Vol. 121, 226-233, 2011.
    doi:10.1002/app.33524