PIER B
 
Progress In Electromagnetics Research B
ISSN: 1937-6472
Home | Search | Notification | Authors | Submission | PIERS Home | EM Academy
Home > Vol. 55 > pp. 115-130

MICROWAVE BREAST SCREENING IN THE TIME-DOMAIN: IDENTIFICATION AND COMPENSATION OF MEASUREMENT-INDUCED UNCERTAINTIES

By E. Porter, E. Kirshin, A. Santorelli, and M. Popovic

Full Article PDF (311 KB)

Abstract:
In this work we examine several sources of measurement uncertainty that can hinder the use of time-domain microwave techniques for breast imaging. The effects that are investigated include those due to clock and trigger jitter, antenna movements, discrepancies in antenna fabrication, and random measurement noise. We explore the significance of the noise contribution of each effect, and present methods to mitigate them when possible and necessary. We demonstrate that, after applying the aforementioned methods, the noise is minimized to the noise floor of the system, thereby enabling successful tumor detection.

Citation:
E. Porter, E. Kirshin, A. Santorelli, and M. Popovic, "Microwave Breast Screening in the Time-Domain: Identification and Compensation of Measurement-Induced Uncertainties," Progress In Electromagnetics Research B, Vol. 55, 115-130, 2013.
doi:10.2528/PIERB13082207

References:
1. Klemm, M., et al., "Development and testing of a 60-element UWB conformal array for breast cancer imaging," Proceedings of the 5th European Conference on Antennas and Propagation (EUCAP), 3077-3079, 2011.

2. Meaney, P. M., M. W. Fanning, D. Li, S. Poplack, and K. D. Paulsen, "A clinical prototype for active microwave imaging of the breast," IEEE Trans. Microw. Theory Techn., Vol. 48, No. 11, 1841-1853, 2000.
doi:10.1109/22.883861

3. Bourqui, J., J. M. Sill, and E. C. Fear, "A prototype system for measuring microwave frequency reflections from the breast," Int. J. Biomedical Imaging, Vol. 2012, 2012.

4. Li, X., E. J. Bond, B. D. Van Veen, and S. C. Hagness, "An overview of ultra-wideband microwave imaging via space-time beamforming for early-stage breast-cancer detection," IEEE Antennas Propag. Mag., Vol. 47, No. 1, 19-34, 2005.
doi:10.1109/MAP.2005.1436217

5. Flores-Tapia, D. and S. Pistorius, "Real time breast microwave radar image reconstruction using circular holography: A study of experimental feasibility," Med. Phys., Vol. 38, No. 10, 5420-5431, 2011.
doi:10.1118/1.3633922

6. Zeng, X., A. Fhager, P. Linner, M. Persson, and H. Zirath, "Experimental investigation of the accuracy of an ultrawideband time-domain microwave-tomographic system," IEEE Trans. Instrum. Meas., Vol. 60, No. 12, 3939-3949, 2011.
doi:10.1109/TIM.2011.2141250

7. Lai, J. C. Y., C. B. Soh, E. Gunawan, and K. S. Low, "UWB microwave imaging for breast cancer detection -- Experimentals with heterogeneous breast phantoms," Progress In Electromagnetics Research M, Vol. 16, 19-29, 2011.

8. Porter, E., E. Kirshin, A. Santorelli, M. Coates, and M. Popovic, "Time-domain multistatic radar system for microwave breast screening," IEEE Antennas Wireless Propag. Lett., Vol. 12, 229-232, 2013.
doi:10.1109/LAWP.2013.2247374

9. Byrne, D., M. O'Halloran, M. Glavin, and E. Jones, "Breast cancer detection based on differential ultrawideband microwave radar," Progress In Electromagnetics Research M, Vol. 20, 231-242, 2011.
doi:10.2528/PIERM11080810

10. Liu, X., X. Xiao, Z. Fan, and J. Yu, "Study on the imaging resolution of ultra-wideband microwave imaging for breast cancer detection," Proceedings of the 3rd International Conference on Bioinformatics and Biomedical Engineering (ICBBE) , 1-4, 2009.

11. Sabouni, A. and , S. Noghanian, and , "The robustness of HGA/FDTD in the presence of noise for microwave breast cancer," IEEE Antennas and Propagation Society International Symposium (APSURSI), 1-4, 2009.

12. Zeng, X., A. Fhager, and M. Persson, "Effects of noise on tomographic breast imaging," General Assembly and Scientific Symposium (URSI), 1-4, 2011.

13. Kanj, H. and M. Popovi, "A novel ultra-compact broadband antenna for microwave breast tumor detection," Progress In Electromagnetics Research, Vol. 86, 169-198, 2008.
doi:10.2528/PIER08090701

14. Santorelli, A., et al., "Experimental demonstration of pulse shaping for time-domain microwave breast imaging," Progress In Electromagnetics Research, Vol. 133, 309-329, 2013.

15. Porter, E., J. Fakhoury, R. Oprisor, M. Coates, and M. Popovic, "Improved tissue phantoms for experimental validation of microwave breast cancer detection," Proceedings of the 4th European Conference on Antennas and Propagation (EUCAP), 1-5, 2010.

16. Santorelli, A., "Breast screening with custom-shaped pulsed microwaves," M. Eng. Thesis, Dept. Elec. and Comp. Eng., 2012.

17. Lim, H. B., N. T. T. Nhung, E. P. Li, and N. D. Thang, "Confocal microwave imaging for breast cancer detection: Delay-multiply-and-sum image reconstruction algorithm," IEEE Trans. Biomed. Eng., Vol. 55, No. 6, 1697-1704, 2008.
doi:10.1109/TBME.2008.919716


© Copyright 2010 EMW Publishing. All Rights Reserved