PIER B
 
Progress In Electromagnetics Research B
ISSN: 1937-6472
Home | Search | Notification | Authors | Submission | PIERS Home | EM Academy
Home > Vol. 57 > pp. 1-20

FIELD MEASUREMENTS WITHIN A LARGE RESONANT CAVITY BASED ON THE PERTURBATION THEORY

By M. Nasserdine, S. Mengue, C. Bourcier, and E. Richalot

Full Article PDF (640 KB)

Abstract:
Due to the sensitivity of the field distribution within a resonant cavity to the presence of an object, conventional measurement techniques employing a probe suffer from a limited accuracy. Therefore we propose a new measurement technique of the electric field distribution that avoids the use of a probe. Based on the perturbation theory, it consists of a measure of the cavity resonant frequency variation while displacing a small perturbing object within the cavity. The choice of the perturbing object shape, dimension and material is discussed with the help of simulation and measurement results in a canonical case. The case of reverberation chamber equipped with a mode stirrer is also considered, as well as the insertion of a metallic box within the cavity. Our measurement setup is very low-cost, simple to set up and to use, and adapted to any cavity geometry.

Citation:
M. Nasserdine, S. Mengue, C. Bourcier, and E. Richalot, "Field Measurements Within a Large Resonant Cavity Based on the Perturbation Theory," Progress In Electromagnetics Research B, Vol. 57, 1-20, 2014.
doi:10.2528/PIERB13100101

References:
1. Kildal, P.-S., K. Rosengren, J. Byun, and J. Lee, "Definition of effective diversity gain and how to measure it in a reverberation chamber," Microwave and Optical Technology Letters, Vol. 34, No. 1, 56-59, 2002.
doi:10.1002/mop.10372

2. Hatfield, M. O., M. B. Slocum, E. A. Godfrey, and G. J. Freyer, "Investigations to extend the lower frequency limit of reverberation chamber," Proc. IEEE Int. Symp. Electromagn. Compat, Vol. 1, 20-23, 1998.

3. Hill, D. A., "Plane wave integral representation for fields in reverberation chambers," IEEE Trans. Electromagn. Compat., Vol. 40, No. 3, 209-217, 1998.
doi:10.1109/15.709418

4. Arnaut, L. R., "Effect of local stir and spatial averaging on measurement and testing in mode tuned and mode-stirred reverberation chambers," IEEE Trans. Electromagn. Compat., Vol. 43, No. 3, 305-325, 2001.
doi:10.1109/15.942603

4. Hill, D. A., Effect of local stir and spatial averaging on measurement and testing in mode tuned and mode-stirred reverberation chambers , Vol. 43, No. 3, 305-325, IEEE Trans. Electromagn. Compat. , 2001.

5. Hill, D. A., Electromagnetic Fields in Cavity Deterministic and Statistical Theories, John Wiley&Sons, New Jersey, 2009.
doi:10.1002/9780470495056

6. Richmond, J. H. and T. E. Tice, "Probes for microwave near-field measurements," IRE Trans. Microwave Theory and Techniques, 32-34, 1955.

7. Justice, R. and V. H. Rumsey, "Measurement of electric field distributions," IRE Trans. Antennas and Propagation, 177-180, 1955.
doi:10.1109/TAP.1955.1144315

8. Memarzadeh-Tehran, H., J. J. Laurin, and R. Kashyap, "Optically modulated probe for precision near-field measurements," IEEE Trans. Instrumentation and Measurement , Vol. 59, No. 10, 2755-2762, 2010.
doi:10.1109/TIM.2010.2045552

9. Abou-Khousa, M. A., M. T. Ghasr, S. Kharkovsky, D. Pommerenke, and R. Zoughi, "Modulated elliptical slot antenna for electric field mapping and microwave imaging," IEEE Trans. Antennas and Propagation, Vol. 59, No. 3, 733-741, 2011.
doi:10.1109/TAP.2010.2103024

10. Rosengren, K., P. S. Kildal, C. Carlson, and J. Carlsson, "Characterization of antennas for mobile and wireless terminals by using reverberation chambers: Improved accuracy by platform stirring," Microw. Opt. Technol. Lett., Vol. 30, No. 20, 391-397, 2001.
doi:10.1002/mop.1324

11. Waldron, R. A., "Perturbation theory of resonant cavities," Monograph No. 373 E, The Institution of Electrical Engineers, 1960.

12. Champlin, K. S. and R. R. Krongard, "The measurement of conductivity and permittivity of semiconductor spheres by an extension of the cavity perturbation method," IRE Trans. Microwave Theory and Techniques, 545-551, 1961.
doi:10.1109/TMTT.1961.1125387

13. Van Bladel, J., Electromagnetic Fields, 2nd Ed., 251, John Wiley&Sons, Inc., New Jersey, 2007.
doi:10.1002/047012458X

14. Joseph, R. I., "Ballistic demagnetizing factor in uniformly magnetized cylinders," Journal of Applied Physics, Vol. 37, No. 13, 4639-4643, 1966.
doi:10.1063/1.1708110

15. Chen, D.-X., J. A. Brug, and R. B. Goldfarb, "Demagnetizing factors for cylinders," IEEE Tran. Magnetics, Vol. 27, No. 4, 3601-3619, 1991.
doi:10.1109/20.102932

16. Kobayashi, M. and Y. Ishikawa, "Surface magnetic charge distributions and demagnetizing factors of circular cylinders," IEEE Trans. Magnetics, Vol. 28, No. 3, 1810-1814, 1992.
doi:10.1109/20.141290

17. Ao, C. O., K. O'Neill, and J. A. Kong, "Magnetoquasistatic response of conducting and permeable prolate spheroid under axial excitation," IEEE Trans. Geoscience and Remote Sensing, Vol. 39, No. 12, 2689-2701, 2001.
doi:10.1109/36.975003

18. Jackson, J. D., Classical Electrodynamics, 3rd Ed., John Wiley&Sons, 1999.

19. Slater, J. C., "Microwave Electronics," Rev. Mod. Phys., Vol. 18, No. 4, 441-512, 1946.
doi:10.1103/RevModPhys.18.441

20. Spencer, E. G., R. C. LeGraw, and amd F. Reggia, "Measurement of microwave dielectric constants and tensor permeabilities of ferrite spheres," Proc. of the IRE, 790-800, 1956.
doi:10.1109/JRPROC.1956.274996

21. Maier, L. C. and J. C Slater, "Field strength measurements in resonant cavities," Journal of Applied Physics, Vol. 23, No. 1, 68-77, 1952.
doi:10.1063/1.1701980

22. Scaglia, C., "Field-strength measurements by perturbation theory," Electronic Letters, Vol. 1, No. 7, 200-201, 1945.
doi:10.1049/el:19650184

23. Laurent, D., O. Legrand, P. Sebbah, C. Vanneste, and F. Mortessagne, "Localized modes in a finite-size open disordered microwave cavity," Physical Review Letters, Vol. 99, 253902, 2007.
doi:10.1103/PhysRevLett.99.253902

24. Kuhl, U., E. Persson, M. Barth, and H.-J. Stockmann, "Mixing of wavefunctions in rectangular billards," European Physical Journal B, Vol. 17, 253-259, 2000.

25. Dorr, U., H. J. Stockmann, M. Barth, and U. Kuhl, "Scarred and chaotic field distributions in a three-dimensional Sinai-microwave resonator," Phys. Rev. Lett., Vol. 80, No. 5, 1030-1033, 1998.
doi:10.1103/PhysRevLett.80.1030

26. Som, S., S. Seth, A. Mandal, and S. Ghosh, "Bead-pull measurement using phase-shift technique in multi-cell elliptical cavity," Proceedings of IPAC2011, 280-282, 2011.

27. Orjubin, G. and M. F. Wong, "Experimental determination of the higher electric field level inside an overmoded reverberation chamber using the generalized extreme value distribution," Ann. Telecomm., Vol. 66, No. 7--8, 457-464, 2011.
doi:10.1007/s12243-011-0259-6

28. Orjubin, G., E. Richalot, S. Mengue, M. F. Wong, and O. Picon, "On the FEM modal approach for a reverberation chamber analysis," IEEE Trans. Electromagn. Compat., Vol. 49, No. 1, 76-85, 2007.
doi:10.1109/TEMC.2006.888187

29. Hill, D. A., M. T. Ma, A. R. Ondrejka, B. F. Riddle, M. L. Crawford, and R. T. Johnk, "Aperture excitation of electrically large, lossy cavities," IEEE Trans. Electromagn. Compat., Vol. 36, No. 3, 169-178, 1994.
doi:10.1109/15.305461

30. Kuhl, U., R. Hohmann, J. Main, and H.-J. Stockmann, "Resonance widths in open microwave cavities studied by harmonic inversion," Phys. Rev. Lett., Vol. 100, No. 25, 254101, 2008.
doi:10.1103/PhysRevLett.100.254101


© Copyright 2010 EMW Publishing. All Rights Reserved