PIER B
 
Progress In Electromagnetics Research B
ISSN: 1937-6472
Home | Search | Notification | Authors | Submission | PIERS Home | EM Academy
Home > Vol. 58 > pp. 95-109

AN APPROXIMATE APPROACH TO DETERMINING THE PERMITTIVITY AND PERMEABILITY NEAR LAMBDA/2 RESONANCES IN TRANSMISSION/REFLECTION MEASUREMENTS

By S. Kim and J. Baker-Jarvis

Full Article PDF (1,022 KB)

Abstract:
We present a simple and straightforward approximate approach to removing resonant artifacts that arise in the material parameters extracted near half-wavelength resonances that arise from transmission/reflection (T/R) measurements on low-loss materials. In order to determine material parameters near one such ╬╗/2 resonance, by means of the 1st-order regressions for the input impedance of the sample-loaded transmission line, we approximate the characteristic impedance of the sample-filled section that is, in turn, dependent either on the relative wave impedance in a coaxial transmission line or on the relative permeability in a rectangular waveguide case. The other material parameters are then found, supplemented with the refractive index obtained from the conventional T/R method. This method applies to both coaxial transmission line and rectangular waveguide measurements. Our approach is validated by use of S-parameters simulated for a low-loss magnetic material, and is also applied to determine the relative permittivity and permeability from S-parameters measured for nylon and lithium-ferrite samples. The results are discussed as compared to those from the well-known Nicolson-Ross-Weir (NRW) method and are experimentally compared to those from the Baker-Jarvis (BJ) method as well.

Citation:
S. Kim and J. Baker-Jarvis, "An Approximate Approach to Determining the Permittivity and Permeability Near Lambda/2 Resonances in Transmission/Reflection Measurements," Progress In Electromagnetics Research B, Vol. 58, 95-109, 2014.
doi:10.2528/PIERB13121308

References:
1. Chen, L. F., C. K. Ong, C. P. Neo, V. V. Varadan, and V. K. Varadan, Microwave Electronics: Measurement and Materials Characterization, Wiley, NJ, 2004.
doi:10.1002/0470020466

2. Baker-Jarvis, J., M. D. Janezic, B. F. Riddle, R. T. Johnk, P. Kabos, C. L. Holloway, R. G. Geyer, and C. A. Grosvenor, "Measuring the permittivity and permeability of lossy materials: Solids, liquids, metals, building materials, and negative-index materials,", National Institute of Standards and Technology Technical Note 1536, 2003.

3. Baker-Jarvis, J., M. D. Janezic, and D. C. DeGroot, "High-frequency dielectric measurements," IEEE Instrum. Meas. Magazine, Vol. 13, 24-31, 2010.
doi:10.1109/MIM.2010.5438334

4. Fenner, R. A., E. J. Rothwell, and L. L. Frasch, "A comprehensive analysis of free-space and guided-wave technique for extracting the permittivity and permeability of materials using reflection-only measurements," Radio Sci., Vol. 47, RS1044, 2012.
doi:10.1029/2011RS004755

5. Chalapat, K., K. Sarvala, J. Li, and G. S. Paraoanu, "Wideband reference-plane invariant method for measuring electromagnetic parameters of materials," EEE Trans. Microw. Theory Tech., Vol. 57, 2257-2267, 2009.
doi:10.1109/TMTT.2009.2027160

6. Qi, J., H. Kettunen, H. Wallen, and A. Sihvola, "Compensation of Fabry-Perot resonances in homogenization of dielectric composites," EEE Antennas Wireless Propag. Lett., Vol. 9, 1057-1060, 2010.
doi:10.1109/LAWP.2010.2091103

7. Liu, X.-X., D. A. Powell, and A. Alu, "Correcting the Fabry-Perot artifacts in metamaterial retrieval procedures," Phys. Rev. B, Vol. 84, 235106, 2011.
doi:10.1103/PhysRevB.84.235106

8. Boughriet, A.-H., C. Legrand, and A. Chapoton, "Noniterative stable transmission/reflection method for low-loss material complex permittivity determination," IEEE Trans. Microw. Theory Tech., Vol. 45, 52-57, 1997.
doi:10.1109/22.552032

9. Hasar, U. C., "Two novel amplitude-only methods for complex permittivity determination of medium- and low-loss materials," Meas. Sci. Technol., Vol. 19, 055706, 2008.
doi:10.1088/0957-0233/19/5/055706

10. Hasar, U. C. and C. R.Westgate, "A broadband and stable method for unique complex permittivity determination of low-loss materials," IEEE Trans. Microw. Theory Tech., Vol. 57, 471-477, 2009.
doi:10.1109/TMTT.2008.2011242

11. Nicolson, A. M. and G. F. Ross, "Measurement of intrinsic properties of materials by time-domain techniques," IEEE Trans. Instrum. Meas., Vol. 19, 377-382, 1970.
doi:10.1109/TIM.1970.4313932

12. Weir, W. B., "Automatic measurement of complex dielectric constant and permeability at microwave frequencies," Proc. IEEE, Vol. 62, 33-36, 1974.
doi:10.1109/PROC.1974.9382

13. Baker-Jarvis, J., E. J. Vanzura, and W. A. Kissick, "Improved technique for determining complex permittivity with transmission/reflection method," IEEE Trans. Microw. Theory Tech., Vol. 38, 1096-1103, 1990.
doi:10.1109/22.57336

14. Baker-Jarvis, J., M. D. Janezic, J. H. Grosvenor, Jr., and R. G. Geyer, "Transmission/reflection and short-circuit line method for measuring permittivity and permeability,", National Institute of Standards and Technology Technical Note 1355-R, 1993.
doi:10.1109/22.57336

15. Smith, D. R. and S. Schultz, "Determination of effective permittivity and permeability of metamaterials from re┬░ection and transmission coefficients," Phys. Rev. B, Vol. 65, 195104, 2002.
doi:10.1103/PhysRevB.65.195104

16. Chen, X., T. M. Grzegorczyk, B.-I. Wu, J. Pachenco, Jr., and J. A. Kong, "Robust method to retrieve the constitutive effective parameters of metamaterials," Phys. Rev. E, Vol. 70, 1-7, 2004.

17. Barroso, J. J. and A. L. de Paula, "Retrieval of permittivity and permeability of homogeneous materials from scattering parameters," Journal of Electromagnetic Waves and Applications, Vol. 24, No. 11-12, 1563-1574, 2010.
doi:10.1163/156939310792149759

18. Pozar, D. M., Microwave Engineering, 2nd Ed., Chapter 6, Wiley, NJ, 1998.

19. Challa, R. K., D. Kajfez, J. R. Gladden, and A. Z. Elsherbeni, "Permittivity measurement with non-standard waveguide by using TRL calibration and fractional linear data fitting," Progress In Electromagnetics Research B, Vol. 2, 1-13, 2010.


© Copyright 2010 EMW Publishing. All Rights Reserved