1. 3GPP, TR 25.814, "Physical layer aspects for evolved universal terrestrial radio access (Release 7),", 2006.
doi:10.1109/TWC.2010.092810.091092 Google Scholar
2. Marzetta, T. L., "Non-cooperative cellular wireless with unlimited numbers of base station antennas," IEEE Trans. on Wireless Communications, Vol. 9, No. 11, 3590-3600, Nov. 2010.
doi:10.1109/MSP.2011.2178495 Google Scholar
3. Rusek, F., D. Persson, B. K. Lau, E. G. Larsson, T. L. Marzetta, O. Edfors, and F. Tufvesson, "Scaling up MIMO: Opportunities and challenges with very large arrays," IEEE Signal Processing Magazine, Vol. 30, No. 1, 40-60, Jan. 2013. Google Scholar
4. Liu, X. and M. E. Bialkowski, "Effect of antenna mutual coupling on MIMO channel estimation and capacity," International Journal of Antennas and Propagation, Vol. 2010, 306173-9, 2010, doi:10.1155/2010/306173. Google Scholar
5. Payami, S. and F. Tufvesson, "Channel measurements and analysis for very large array systems at 2.6 GHz," Proc. 6th European Conf. on Antennas and Propagation, EuCAP 2012, Prague, Czech Republic, Mar. 2012. Google Scholar
6. Gao, X., F. Tufvesson, O. Edfors, and F. Rusek, "Measured propagation characteristics for very-large MIMO at 2.6 GHz," Proc. 46th Annual Asilomar Conference on Signals, Systems and Computers, Nov. 2012. Google Scholar
7. Glazunov, A. A., V. M. Kolmonen, and T. A. Laitinen, "MIMO over-the-air testing," LTE-advanced and Next Generation Wireless Networks --- Channel Modelling and Propagation, Chapter 15, John Wiley & Sons, Oct. 2012. Google Scholar
8., 3GPP TS 34.114 V11.1.0, "User equipment (UE)/mobile station (MS) over the air (OTA) antenna performance," Conformance Testing (Release 11), Jun. 2012.
doi:10.1109/TAP.2012.2201125 Google Scholar
9. Kildal, P.-S., X. Chen, C. Orlenius, M. Franzen, and C. S. L. Patane, "Characterization of reverberation chambers for OTA measurements of wireless devices: Physical formulations of channel matrix and new uncertainty formula," IEEE Trans. Antennas Propagat., Vol. 60, No. 8, 3875-3891, Aug. 2012.
doi:10.1109/TEMC.2012.2188896 Google Scholar
10. Holloway, C. L., H. A. Shah, R. J. Pirkl, K. A. Remley, D. A. Hill, and J. Ladbury, "Early time behavior in reverberation chambers and its effect on the relationships between coherence bandwidth, chamber decay time, RMS delay spread, and the chamber buildup time ," IEEE Transactions on Electromagnetic Compatibility, Vol. 54, No. 4, 714-725, Aug. 2012.
doi:10.1109/LAWP.2008.928488 Google Scholar
11. Valenzuela-Valdes, J. F., A. M. Martinez-Gonzalez, and D. A. Sanchez-Hernandez, "Emulation of MIMO nonisotropic fading environments with reverberation chambers," IEEE Antennas and Wireless Propagation Letters, Vol. 7, 325-328, 2008.
doi:10.1109/TAP.2010.2096185 Google Scholar
12. Sanchez-Heredia, J. D., J. F. Valenzuela-Valdes, A. M. Martinez-Gonzalez, and D. A. Sanchez-Hernandez, "Emulation of MIMO Rician-fading environments with mode-stirred reverberation chambers," IEEE Transactions on Antennas and Propagation, Vol. 59, No. 2, 654-660, Feb. 2011.
doi:10.1002/mop.1323 Google Scholar
13. Rosengren, K. and P.-S. Kildal, "Study of distributions of modes and plane waves in reverberation chambers for characterization of antennas in multipath environment," Microwave Opt. Technol. Lett., Vol. 30, No. 20, 386-391, Sep. 2001.
doi:10.1109/TAP.2006.883987 Google Scholar
14. Holloway, C. L., D. A. Hill, J. M. Ladbury, P. Wilson, G. Koepke, and J. Coder, "On the use of reverberation chambers to simulate a controllable Rician radio environment for the testing of wireless devices," EEE Transactions on Antennas and Propagation, Vol. 54, No. 11, 3167-3177, Nov. 2006.
doi:10.1049/el:20040411 Google Scholar
15. Lienard, M. and P. Degauque, "Simulation of dual array multipath channels using mode-stirred reverberation chambers," Electronics Letters, Vol. 40, No. 10, 578-580, May 2004. Google Scholar
16. Kostas, J. G. and B. Boverie, "Statistical model for a mode-stirred chamber," IEEE Trans. Electromagn. Compat., Vol. 33, 366-370, Nov. 1991. Google Scholar
17. Molisch, A. F., Wireless Communications, 2nd Ed., John Wiley & Sons, New York, 2011.
doi:10.1109/MCOM.2011.5936167
18. Garcia-Fernandez, M. A., J. D. Sanchez-Heredia, A. M. Martinez-Gonzalez, D. A. Sanchez-Hernandez, and J. F. Valenzuela-Valdes, "Advances in mode-stirred reverberation chambers for wireless communication performance evaluation," IEEE Communications Magazine, Vol. 49, No. 7, 140-147, Jul. 2011.
doi:10.1109/MCOM.2004.1367562 Google Scholar
19. Kildal, P.-S. and K. Rosengren, "Correlation and capacity of MIMO systems and mutual coupling, radiation efficiency, and diversity gain of their antennas: Simulations and measurements in a reverberation chamber," IEEE Communications Magazine, Vol. 42, No. 12, 104-112, Dec. 2004.
doi:10.1049/el.2009.2489 Google Scholar
20. Handel, P., S. Prasad, and C. Beckman, "Maximum likelihood estimation of reverberation chamber direct-to-scattered ratio," Electronics Letters, Vol. 45, No. 25, Dec. 2009. Google Scholar
21. Stoica, P. and R. Moses, Introduction to Spectral Analysis, Prentice-Hall, Englewood Cliffs, USA, 1997.