PIER B
 
Progress In Electromagnetics Research B
ISSN: 1937-6472
Home | Search | Notification | Authors | Submission | PIERS Home | EM Academy
Home > Vol. 63 > pp. 95-106

ELECTRIC QUADRUPOLARIZABILITY OF A SOURCE-DRIVEN DIELECTRIC SPHERE

By A. D. Yaghjian, M. Silveirinha, A. Askarpour, and A. Alu

Full Article PDF (251 KB)

Abstract:
Since both metamaterials comprised of artificial molecules (inclusions in a host material) and natural molecular materials at optical and greater frequencies can exhibit significant electric quadrupolarization as well as electric and magnetic dipolarization, we determine the passive, causal electric quadrupolarizability for a spherically symmetric molecule, namely a dielectric sphere subject to source-driven applied fields. For source-driven excitations, it is found that two electric quadrupolarizability constants are generally required to characterize the electric quadrupolar response of the sphere, with one of the constants multiplying the divergence of the applied electric field. For source-free fields, such as the fields of the eigenmodes of an electric quadrupolar array, the local electric field illuminating each inclusion is solenoidal. The constitutive relation is characterized by just one quadrupolarizability constant, and the electric quadrupolarization becomes traceless. It is also found that the electric quadrupolarization becomes very large and effectively traceless near the resonant frequencies of electrically small plasmonic spheres with negative permittivity and for somewhat larger spheres with positive permittivity.

Citation:
A. D. Yaghjian, M. Silveirinha, A. Askarpour, and A. Alu, "Electric quadrupolarizability of a source-driven dielectric sphere," Progress In Electromagnetics Research B, Vol. 63, 95-106, 2015.
doi:10.2528/PIERB15052701

References:
1. Papas, C. H., Theory of Electromagnetic Wave Propagation, McGraw-Hill, New York, 1965; and Dover, New York , 1988.

2. Yaghjian, A. D., A. Alu, and M. G. Silveirinha, "Anisotropic representation for spatially dispersive periodic metamaterial arrays," Transformation Electromagnetics and Metamaterials, Chapter 13, Springer, 2014, also ``Homogenization of spatially dispersive metamaterial arrays in terms of generalized electric and magnetic polarizations,'' Photonics and Nanostructures --- Fundamentals and Applications, 374–396, Nov. 2013.

3. Yaghjian, A. D., "Boundary conditions for electric quadrupolar continua," Radio Science, Vol. 49, 1289-1299, Dec. 2014.
doi:10.1002/2014RS005530

4. Scott, W. T., The Physics of Electricity and Magnetism, Robert E. Krieger, Huntington, NY, 1977.

5. Raab, R. E. and O. L. de Lange, Multipole Theory in Electromagnetism, Clarendon Press, Oxford NY, 2005.

6. Cho, D. J., F. Wang, X. Zhang, and . R. Shen, "Contribution of the electric quadrupole resonance in optical metamaterials," Phys. Rev. B, Vol. 78, 121101-1-121101-4, 2008.

7. Silveirinha, M. G., "Boundary conditions for electric quadrupolar metamaterials," New Journal of Physics, Vol. 16, 083042-1-083042-30, 2014.

8. Stratton, J. A., Electromagnetic Theory, McGraw-Hill, New York, 1941.

9. Agranovich, V. M. and V. L. Ginzburg, Spatial Dispersion in Crystal Optics and the Theory of Excitons, Wiley-Interscience, New York, 1966; also see 2nd Edition, Springer, New York, 1984.
doi:10.1007/978-3-662-02406-5

10. Silveirinha, M. G., "Nonlocal homogenization theory of structured materials," Metamaterials Handbook: Theory and Phenomena of Metamaterials, Chapter 13, F. Capolino (ed.), CRC Press, Boca Raton, 2009.

11. Chebykin, A. V., A. A. Orlov, A. V. Vozianova, S. I. Maslovski, Y. S. Kivshar, and P. A. Belov, "Nonlocal effective medium model for multilayered metal-dielectric metamaterials," Phys. Rev. B, Vol. 84, 115438-1-115438-9, 2011.
doi:10.1103/PhysRevB.84.115438

12. Van Bladel, J. G., Electromagnetic Fields, 2nd Edition, IEEE/Wiley, Piscataway, NJ, 2007.
doi:10.1002/047012458X

13. Bohren, C. F. and D. R. Huffman, Absorption and Scattering of Light by Small Particles, John Wiley, New York, 1983.

14. Alu, A. and N. Engheta, "Guided propagation along quadrupolar chains of plasmonic nanoparticles ," Phys. Rev. B, Vol. 79, 235412-1-235412-12, 2009.
doi:10.1103/PhysRevB.79.235412

15. Naik, G. V., V. M. Shalaev, and A. Boltasseva, "Alternative plasmonic materials: beyond gold and silver," Adv. Mater., Vol. 25, 3264-3294, 2013.
doi:10.1002/adma.201205076

16. Alu, A. and N. Engheta, "Enhanced directivity from subwavelength infrared/optical nano-antennas loaded with plasmonic materials or metamaterials," IEEE Trans. Antennas Propagat., Vol. 55, 3027-3029, Nov. 2007.
doi:10.1109/TAP.2007.908368

17. Oldenburg, S. J., G. D. Hale, J. B. Jackson, and N. J. Halas, "Light scattering from dipole and quadrupole nanoshell antennas," Applied Phys. Letts., Vol. 75, 1063-1065, Aug. 1999.
doi:10.1063/1.124597

18. Alu, A., A. D. Yaghjian, R. A. Shore, and M. G. Silveirinha, "Causality relations in the homogenization of metamaterials," Phys. Rev. B, Vol. 84, 054305-1-054305-16, Aug. 2011.

19. Hansen, T. B. and A. D. Yaghjian, Plane-wave Theory of Time-domain Fields, IEEE/Wiley, New York, 1999.
doi:10.1109/9780470545522

20. Lu, J. K., Boundary Value Problems for Analytic Functions, World Scientific, New York, 1993.


© Copyright 2010 EMW Publishing. All Rights Reserved