Vol. 64
Latest Volume
All Volumes
PIERB 105 [2024] PIERB 104 [2024] PIERB 103 [2023] PIERB 102 [2023] PIERB 101 [2023] PIERB 100 [2023] PIERB 99 [2023] PIERB 98 [2023] PIERB 97 [2022] PIERB 96 [2022] PIERB 95 [2022] PIERB 94 [2021] PIERB 93 [2021] PIERB 92 [2021] PIERB 91 [2021] PIERB 90 [2021] PIERB 89 [2020] PIERB 88 [2020] PIERB 87 [2020] PIERB 86 [2020] PIERB 85 [2019] PIERB 84 [2019] PIERB 83 [2019] PIERB 82 [2018] PIERB 81 [2018] PIERB 80 [2018] PIERB 79 [2017] PIERB 78 [2017] PIERB 77 [2017] PIERB 76 [2017] PIERB 75 [2017] PIERB 74 [2017] PIERB 73 [2017] PIERB 72 [2017] PIERB 71 [2016] PIERB 70 [2016] PIERB 69 [2016] PIERB 68 [2016] PIERB 67 [2016] PIERB 66 [2016] PIERB 65 [2016] PIERB 64 [2015] PIERB 63 [2015] PIERB 62 [2015] PIERB 61 [2014] PIERB 60 [2014] PIERB 59 [2014] PIERB 58 [2014] PIERB 57 [2014] PIERB 56 [2013] PIERB 55 [2013] PIERB 54 [2013] PIERB 53 [2013] PIERB 52 [2013] PIERB 51 [2013] PIERB 50 [2013] PIERB 49 [2013] PIERB 48 [2013] PIERB 47 [2013] PIERB 46 [2013] PIERB 45 [2012] PIERB 44 [2012] PIERB 43 [2012] PIERB 42 [2012] PIERB 41 [2012] PIERB 40 [2012] PIERB 39 [2012] PIERB 38 [2012] PIERB 37 [2012] PIERB 36 [2012] PIERB 35 [2011] PIERB 34 [2011] PIERB 33 [2011] PIERB 32 [2011] PIERB 31 [2011] PIERB 30 [2011] PIERB 29 [2011] PIERB 28 [2011] PIERB 27 [2011] PIERB 26 [2010] PIERB 25 [2010] PIERB 24 [2010] PIERB 23 [2010] PIERB 22 [2010] PIERB 21 [2010] PIERB 20 [2010] PIERB 19 [2010] PIERB 18 [2009] PIERB 17 [2009] PIERB 16 [2009] PIERB 15 [2009] PIERB 14 [2009] PIERB 13 [2009] PIERB 12 [2009] PIERB 11 [2009] PIERB 10 [2008] PIERB 9 [2008] PIERB 8 [2008] PIERB 7 [2008] PIERB 6 [2008] PIERB 5 [2008] PIERB 4 [2008] PIERB 3 [2008] PIERB 2 [2008] PIERB 1 [2008]
2015-11-06
A Frequency Band Reconfigurable UWB Antenna for High Gain Applications
By
Progress In Electromagnetics Research B, Vol. 64, 29-45, 2015
Abstract
An octagonal shape patch antenna with switchable inverted L-shaped slotted ground is designed for frequency band reconfigurable and experimentally validated. The antenna is capable of frequency band switching at five different states including an ultra wideband (UWB) state, two narrowband states and a dual-band state by using RF switching element p-i-n diodes. In the case of ultrawide band (UWB) state, the proposed antenna operates over impedance bandwidth of 141% (2.87-16.56 GHz) under simulation and 139% (2.85-15.85 GHz) in measurement with return loss S11 < -10 dB. For two narrowband states, 10 dB impedance bandwidth achieved is 16% (5.05-5.91 GHz) and 11% (8.76-9.80 GHz) under simulation and 14% (5.01-5.79 GHz) and 10% (8.68-9.69 GHz) in measurement, respectively. For the dual band state, 10 dB impedance bandwidth of 2.21-2.52 GHz (13%) & 5.07-5.89 GHz (15%) and 2.18-2.52 GHz (14%) & 8.78-9.71 GHz (10%) under simulation and 2.20-2.50 GHz (12%) & 5.05-5.90 GHz (15%) and 2.19-2.50 GHz (13%) & 8.70-9.60 GHz (9%) in measurement with return loss S11 < -10 dB. The proposed antenna is capable to serve in different wireless communication applications such as WLAN [802.11b/g/n (2.4-2.48 GHz), 802.11a/h/j/n (5.2 GHz), ISM band (2.4-2.5 GHz)], Bluetooth (2400-2484 MHz), WiMAX (2.3-2.4 & 5.15-5.85 GHz), WiFi (2.40-2.48, 5.15-5.85 GHz) and UWB (3.1-10.6 GHz). It also works at 9.2 GHz where airborne radar applications are found. Next, the antenna gain is improved with the help of a circular loop frequency selective surface (FSS) and a PEC (perfect electric conductor) sheet. Measured peak gain represents average improvements about 4 dB-5 dB over the UWB band. Experimental results seem in good agreement with the simulated ones of the proposed antenna with and without the frequency selective surface.
Citation
Ritesh Kumar Saraswat, and Mithilesh Kumar, "A Frequency Band Reconfigurable UWB Antenna for High Gain Applications," Progress In Electromagnetics Research B, Vol. 64, 29-45, 2015.
doi:10.2528/PIERB15090103
References

1. Zhang, C., S. Yang, H. K. Pan, A. E. Fathy, and V. K. Nair, "Frequency reconfigurable antennas for multi radio wireless platforms," IEEE Microwave Magazine, Vol. 10, No. 1, 66-83, Feb. 2009.
doi:10.1109/MMM.2008.930677

2. FCC (Federal Communications Commission), , First Report and Order, Feb. 14, 2002.

3. Li, R. L., T. Wu, S. Y. Eom, S. S. Myoung, K. Lim, J. Laskar, S. I. Jeon, and M. M. Tentzeris, "Switchable quad-band antennas for cognitive radio base station applications," IEEE Trans. Antennas Propagation, Vol. 58, No. 5, 1468-1476, May 2010.
doi:10.1109/TAP.2010.2044472

4. Mahmoud, S. F. and A. F. Sheta, "A widely tunable compact patch antenna," IEEE Antennas Wireless Propagation Letter, Vol. 7, 40-42, 2008.

5. Huang, C. T. and T. Y. Han, "Reconfigurable monopolar patch antenna," Electron Lett., Vol. 46, No. 3, 199-200, Feb. 2010.
doi:10.1049/el.2010.3242

6. Gardner, P., M. R. Hamid, P. S. Hall, and F. Ghanem, "Switched-band Vivaldi antenna," IEEE Trans. Antennas Propagation, Vol. 59, No. 5, 1472-1480, May 2011.
doi:10.1109/TAP.2011.2122293

7. Li, R. L., G. P. Jin, and D. L. Zhang, "Optically controlled reconfigurable antenna for cognitive radio applications," Electron Lett., Vol. 47, No. 17, 948-950, Aug. 2011.
doi:10.1049/el.2011.1958

8. Gardner, P., M. R. Hamid, P. S. Hall, and F. Ghanem, "Vivaldi antenna with integrated switchable band pass resonator," IEEE Trans. Antennas Propagation, Vol. 59, No. 11, 4008-4015, Nov. 2011.

9. Ghafouri-Shiraz, H. and A. Tariq, "Frequency-reconfigurable monopole antennas," IEEE Trans. Antennas Propagation, Vol. 60, No. 1, 44-50, Jan. 2012.
doi:10.1109/TAP.2011.2167929

10. Gardner, P., J. R. Kelly, and P. S. Hall, "Integrated wide-narrow band antenna for switched operation," Processing IEEE EuCAP, 3757-3760, Berlin, Germany, 2009.

11. Boudaghi, H., M. Azarmanesh, and M. Mehranpour, "A frequency-reconfigurable monopole antenna using switchable slotted ground structure," IEEE Antennas and Wireless Propagation Letters, Vol. 11, 2012.

12. Dushmantha, N., P. Thalakotuna, L. Matekovits, M. Heimlich, K. P. Esselle, and S. G. Hay, "Active switching devices in a tunable EBG structure: Placement strategies and modeling," Journal of Electromagnetic Waves and Applications, Vol. 25, No. 11-12, 1740-1751, 2011.
doi:10.1163/156939311797164873

13. Dushmantha, N., P. Thalakotuna, K. P. Esselle, L. Matekovits, M. Heimlich, and S. G. Hay, "Changing the electromagnetic bandgap and stopbands in a multistate periodic circuit," Microwave and Optical Technology Letters (MOTL), Vol. 55, No. 8, 1871-1874, Aug. 2013.
doi:10.1002/mop.27675

14. Kushwaha, N. and R. Kumar, "Design of slotted ground hexagonal microstrip patch antenna and gain improvement with FSS screen," Progress In Electromagnetics Research B, Vol. 51, 177-199, 2013.
doi:10.2528/PIERB13031604

15. Alpha Industries "ALPHA-6355 beamlead PIN diode,", Data sheet, [Online]. Available: http://www.datasheetarchive.com/ALPHA/PIN diode 6355-datasheet.html.

16. Computer Simulation Technology - CST (Microwave Studio MWS), Version-2014.

17. Ray, K. P. and G. Kumar, "Determination of resonant frequency of microstrip antennas," Microw. Opt. Technol. Lett., Vol. 23, 114-117, 1999.
doi:10.1002/(SICI)1098-2760(19991020)23:2<114::AID-MOP15>3.0.CO;2-G

18. Langley, R. J. and E. A. Parker, "Equivalent-circuit model for arrays of square loops," Electron Lett., Vol. 18, 294-296, 1982.
doi:10.1049/el:19820201

19. Chung, Y.-C., K.-W. Lee, I.-P. Hong, M.-G. Lee, H.-J. Chun, and J.-G. Yook, "Simple prediction of FSS radome transmission characteristics using an FSS equivalent circuit model," IEICE Electron. Expr., Vol. 8, No. 2, 89-95, 2011.
doi:10.1587/elex.8.89

20. Kushwaha, N., R. Kumar, R. V. S. Ram Krishna, and T. Oli, "Design and analysis of new compact UWB frequency selective surface and its equivalent circuit," Progress In Electromagnetics Research C, Vol. 46, 31-39, 2014.
doi:10.2528/PIERC13100908