Vol. 67
Latest Volume
All Volumes
PIERB 105 [2024] PIERB 104 [2024] PIERB 103 [2023] PIERB 102 [2023] PIERB 101 [2023] PIERB 100 [2023] PIERB 99 [2023] PIERB 98 [2023] PIERB 97 [2022] PIERB 96 [2022] PIERB 95 [2022] PIERB 94 [2021] PIERB 93 [2021] PIERB 92 [2021] PIERB 91 [2021] PIERB 90 [2021] PIERB 89 [2020] PIERB 88 [2020] PIERB 87 [2020] PIERB 86 [2020] PIERB 85 [2019] PIERB 84 [2019] PIERB 83 [2019] PIERB 82 [2018] PIERB 81 [2018] PIERB 80 [2018] PIERB 79 [2017] PIERB 78 [2017] PIERB 77 [2017] PIERB 76 [2017] PIERB 75 [2017] PIERB 74 [2017] PIERB 73 [2017] PIERB 72 [2017] PIERB 71 [2016] PIERB 70 [2016] PIERB 69 [2016] PIERB 68 [2016] PIERB 67 [2016] PIERB 66 [2016] PIERB 65 [2016] PIERB 64 [2015] PIERB 63 [2015] PIERB 62 [2015] PIERB 61 [2014] PIERB 60 [2014] PIERB 59 [2014] PIERB 58 [2014] PIERB 57 [2014] PIERB 56 [2013] PIERB 55 [2013] PIERB 54 [2013] PIERB 53 [2013] PIERB 52 [2013] PIERB 51 [2013] PIERB 50 [2013] PIERB 49 [2013] PIERB 48 [2013] PIERB 47 [2013] PIERB 46 [2013] PIERB 45 [2012] PIERB 44 [2012] PIERB 43 [2012] PIERB 42 [2012] PIERB 41 [2012] PIERB 40 [2012] PIERB 39 [2012] PIERB 38 [2012] PIERB 37 [2012] PIERB 36 [2012] PIERB 35 [2011] PIERB 34 [2011] PIERB 33 [2011] PIERB 32 [2011] PIERB 31 [2011] PIERB 30 [2011] PIERB 29 [2011] PIERB 28 [2011] PIERB 27 [2011] PIERB 26 [2010] PIERB 25 [2010] PIERB 24 [2010] PIERB 23 [2010] PIERB 22 [2010] PIERB 21 [2010] PIERB 20 [2010] PIERB 19 [2010] PIERB 18 [2009] PIERB 17 [2009] PIERB 16 [2009] PIERB 15 [2009] PIERB 14 [2009] PIERB 13 [2009] PIERB 12 [2009] PIERB 11 [2009] PIERB 10 [2008] PIERB 9 [2008] PIERB 8 [2008] PIERB 7 [2008] PIERB 6 [2008] PIERB 5 [2008] PIERB 4 [2008] PIERB 3 [2008] PIERB 2 [2008] PIERB 1 [2008]
2016-05-05
Application of Facet Scattering Model in SAR Imaging of Sea Surface Waves with Kelvin Wake
By
Progress In Electromagnetics Research B, Vol. 67, 107-120, 2016
Abstract
The principal purpose of this work is the simulation of the ship wake in Synthetic Aperture Radar (SAR) imaging based on a facet scattering model. The hydrodynamic model of the surface waves mainly considers the Kelvin wake waves and the wind driven waves. For the prediction of radar returns from the composite surface, the semi-deterministic facet scattering model (SDFSM) is proposed, which is verified to have good performance through a comparison with the experiment by SASS-II. Then, the distributions of backscattering normalized radar cross section (NRCS) of facets are investigated for both VV and HH polarizations and characteristics of the wake pattern are shown with good visibility. On the basis of these, an application of velocity bunching (VB) imaging model is presented in detail for the simulation of SAR imaging of sea surface waves with Kelvin wake. Finally, several numerical results provide states of the effects of ship speed, wind speed and the ship sailing direction on the characteristics of Kelvin wake in SAR images. Thus, this simulation may enable us to provide a theoretical basis to the detection of ship wakes.
Citation
Jia-Kun Wang, Min Zhang, Jun-Long Chen, and Zhaohui Cai, "Application of Facet Scattering Model in SAR Imaging of Sea Surface Waves with Kelvin Wake," Progress In Electromagnetics Research B, Vol. 67, 107-120, 2016.
doi:10.2528/PIERB16022804
References

1. Holt, B., "SAR imaging of the ocean surface," Synthetic Aperture Radar Marine User's Manual, 25, C. R. Jackson and J. R. Apel, Eds., NOAA, Washington, 2004.

2. Zhang, Y. D., L. N. Wu, and G. Wei, "A new classifier for polarimetric SAR images," Progress In Electromagnetics Research, Vol. 94, 83-104, 2009.
doi:10.2528/PIER09041905

3. Liu, X. W., "Remote sensing image classification of the improved BP NN," Journal of Sustainable Development, Vol. 3, No. 4, 220-225, 2010.

4. Lyden, J. D., R. R. Hammond, D. R. Lyzenga, and R. A. Shuchman, "Synthetic aperture radar imaging of surface ship wakes," J. Geophys. Res., Vol. 93, 12293-12303, 1988.
doi:10.1029/JC093iC10p12293

5. Reed, A. M. and J. H. Milgram, "Ship wakes and their radar images," Annual Review of Fluid Mechanics, Vol. 34, 469-502, 2002.
doi:10.1146/annurev.fluid.34.090101.190252

6. William, G. P., C. C. Pablo, C. W. Christopher, and S. F. Karen, "Ship and wake detection," Synthetic Aperture Radar Marine User's Manual, 277-303, C. R. Jackson and J. R. Apel, Eds., NOAA, Washington, 2004.

7. Tunaley, J. K. E., E. H. Buller, K. H. Wu, and M. T. Rey, "The simulation of the SAR image of a ship wake," IEEE Trans. Geosci. Remote Sens., Vol. 29, 149-156, 1991.
doi:10.1109/36.103305

8. Oumansour, K., Y. Wang, and J. Saillard, "Multi-frequency SAR observation of a ship wake," IEE Proc. Radar, Sonar Navig., Vol. 143, No. 4, 275-280, 1996.
doi:10.1049/ip-rsn:19960402

9. Shemer, L., L. Kagan, and G. Zilman, "Simulation of ship wake image by an along-track interferometric SAR," Int. J. Remote Sens., Vol. 17, 3577-3597, 1996.
doi:10.1080/01431169608949172

10. Hennings, I., R. Romeiser, W. Alpers, and A. Viola, "Radar imaging of Kelvin arms of ship wakes," Int. J. Remote Sens., Vol. 20, 2519-2543, 1999.
doi:10.1080/014311699211912

11. Zilman, G., A. Zapolski, and M. Marom, "The speed and beam of a ship from its wake's SAR images," IEEE Trans. Geosci. Remote Sens., Vol. 42, 2335-2343, 2004.
doi:10.1109/TGRS.2004.833390

12. Wang, A.-M. and M.-H. Zhu, "Simulation of ship generated turbulent and vertical wake imaging by SAR," Journal of Electronics, Vol. 21, 64-71, 2004.

13. Arnold-Bos, A., A. Khenchaf, and A. Martin, "Bistatic radar imaging of the marine environment --- Part II: Simulation and result analysis," IEEE Trans. Geosci. Remote Sens., Vol. 45, 3384-3396, 2007.
doi:10.1109/TGRS.2007.899812

14. Sun, R.-Q., G. Luo, M. Zhang, and C. Wang, "Electromagnetic scattering model of the Kelvin wake and turbulent wake by a moving ship," Waves in Random Media, Vol. 21, 501-514, 2011.
doi:10.1080/17455030.2011.591446

15. Zilman, G., A. Zapolski, and M. Marom, "On detectability of a ship's Kelvin wake in simulated SAR images of rough sea surface," IEEE Trans. Geosci. Remote Sens., Vol. 53, 609-619, 2014.

16. Voronovich, A. G., Wave Scattering from Rough Surfaces, 2nd Ed., Springer-Verlag Berlin, Heidelberg, New York, 1999.
doi:10.1007/978-3-642-59936-1

17. Pinel, N. and C. Boulier, Electromagnetic Wave Scattering from Random Rough Surfaces: Asymptotic Models, Wiley-ISTE, 2013.
doi:10.1002/9781118579152

18. Soubret, A., G. Berginc, and C. Bourrely, "Application of reduced Rayleigh equations to electromagnetic wave scattering by two-dimensional randomly rough surfaces," Physical Review B, Vol. 63, No. 24, 245411, 2001.
doi:10.1103/PhysRevB.63.245411

19. Elfouhaily, T. and C.-A. Guerin, "A critical survey of approximate scattering wave theories from random rough surfaces," Waves in Random Media, Vol. 14, No. 4, R1-R40, 2004.
doi:10.1088/0959-7174/14/4/R01

20. Ulaby, F., R. Moore, and A. Fung, Microwave Remote Sensing: Active and Passive, Vol. 2 --- Radar Remote Sensing and Surface Scattering and Emission Theory, Addison-Wesley, Advanced Book Program, Reading, MA, 1982.

21. Voronovich, A., "Small-slope approximation for electromagnetic wave scattering at a rough interface of two dielectric half-spaces," Waves in Random Media, Vol. 4, No. 3, 337-367, 1994.
doi:10.1088/0959-7174/4/3/008

22. Voronovich, A. and V. Zavorotny, "Theoretical model for scattering of radar signals in Ku- and C-bands from a rough sea surface with breaking waves," Waves in Random Media, Vol. 11, No. 3, 247-269, 2001.

23. Tessendorf, J., "Simulating ocean water," Simulating Nature: Realistic and Interactive Techniques, ACM SIGGRAPH 2001 Course Notes, 2001.

24. Elfouhaily, T., B. Chapron, and K. Katsaros, "A unified directional spectrum for long and short wind-driven waves," J. Geophys. Res., Vol. 102, 15781-15796, 1997.
doi:10.1029/97JC00467

25. Fuks, I. M. and A. G. Voronovich, "Wave diffraction by rough interfaces in an arbitrary plane- layered medium," Wave in Random Media, Vol. 10, 253-272, 2000.

26. Fuks, I. M., "Wave dirrfaction by a rough boundary of an arbitrary plane-layered medium," IEEE Trans. Antennas Propagat., Vol. 49, 630-639, 2001.
doi:10.1109/8.923325

27. Chen, H., M. Zhang, D. Nie, and C. C. Yin, "Robust semi-deterministic facet model for fast estimation on EM scattering from ocean-like surface," Progress In Electromagnetics Research, Vol. 18, 347-363, 2009.
doi:10.2528/PIERB09100508

28. Arnold-Bos, A., A. Khenchaf, and A. Martin, "Bistatic radar imaging of the marine environment --- Part I: Theoretical background," IEEE Trans. Geosci. Remote Sens., Vol. 45, 3372-3383, 2007.
doi:10.1109/TGRS.2007.897436

29. Zhang, M., Y.-W. Zhao, H. Chen, and W.-Q. Jiang, "SAR imaging simulation for composite model of ship on dynamic ocean scene," Progress In Electromagnetics Research, Vol. 113, 395-412, 2011.

30. Zurk, L. and W. Plant, "Comparison of actual and simulated synthetic aperture radar image spectra of ocean waves," J. Geophys. Res., Vol. 101, No. C4, 8913-8931, 1996.
doi:10.1029/95JC03279

31. Zhao, Y. W., M. Zhang, X. Geng, and P. Zhou, "A comprehensive facet model for bistatic SAR imagery of dynamic ocean scene," Progress In Electromagnetics Research, Vol. 123, 427-445, 2012.
doi:10.2528/PIER11100910

32. Newman, J. N., Marine Hydrodynamics, M.I.T. Press, Cambridge, Mass, 1977.