Vol. 74
Latest Volume
All Volumes
PIERB 105 [2024] PIERB 104 [2024] PIERB 103 [2023] PIERB 102 [2023] PIERB 101 [2023] PIERB 100 [2023] PIERB 99 [2023] PIERB 98 [2023] PIERB 97 [2022] PIERB 96 [2022] PIERB 95 [2022] PIERB 94 [2021] PIERB 93 [2021] PIERB 92 [2021] PIERB 91 [2021] PIERB 90 [2021] PIERB 89 [2020] PIERB 88 [2020] PIERB 87 [2020] PIERB 86 [2020] PIERB 85 [2019] PIERB 84 [2019] PIERB 83 [2019] PIERB 82 [2018] PIERB 81 [2018] PIERB 80 [2018] PIERB 79 [2017] PIERB 78 [2017] PIERB 77 [2017] PIERB 76 [2017] PIERB 75 [2017] PIERB 74 [2017] PIERB 73 [2017] PIERB 72 [2017] PIERB 71 [2016] PIERB 70 [2016] PIERB 69 [2016] PIERB 68 [2016] PIERB 67 [2016] PIERB 66 [2016] PIERB 65 [2016] PIERB 64 [2015] PIERB 63 [2015] PIERB 62 [2015] PIERB 61 [2014] PIERB 60 [2014] PIERB 59 [2014] PIERB 58 [2014] PIERB 57 [2014] PIERB 56 [2013] PIERB 55 [2013] PIERB 54 [2013] PIERB 53 [2013] PIERB 52 [2013] PIERB 51 [2013] PIERB 50 [2013] PIERB 49 [2013] PIERB 48 [2013] PIERB 47 [2013] PIERB 46 [2013] PIERB 45 [2012] PIERB 44 [2012] PIERB 43 [2012] PIERB 42 [2012] PIERB 41 [2012] PIERB 40 [2012] PIERB 39 [2012] PIERB 38 [2012] PIERB 37 [2012] PIERB 36 [2012] PIERB 35 [2011] PIERB 34 [2011] PIERB 33 [2011] PIERB 32 [2011] PIERB 31 [2011] PIERB 30 [2011] PIERB 29 [2011] PIERB 28 [2011] PIERB 27 [2011] PIERB 26 [2010] PIERB 25 [2010] PIERB 24 [2010] PIERB 23 [2010] PIERB 22 [2010] PIERB 21 [2010] PIERB 20 [2010] PIERB 19 [2010] PIERB 18 [2009] PIERB 17 [2009] PIERB 16 [2009] PIERB 15 [2009] PIERB 14 [2009] PIERB 13 [2009] PIERB 12 [2009] PIERB 11 [2009] PIERB 10 [2008] PIERB 9 [2008] PIERB 8 [2008] PIERB 7 [2008] PIERB 6 [2008] PIERB 5 [2008] PIERB 4 [2008] PIERB 3 [2008] PIERB 2 [2008] PIERB 1 [2008]
2017-04-06
Evaluation of Forces and Torques Generated by Toroidal Helicoidal Magnetic Fields
By
Progress In Electromagnetics Research B, Vol. 74, 37-59, 2017
Abstract
In this paper, the computation of forces and torques mutually applied between a helical toroidal magnet and a magnet shaped like an angular plane sector is illustrated. The evaluation considers the magnetostatic field hypothesis. The main aim of this study is to furnish a tool for performing fast and accurate evaluation of forces and torques based on the method of the magnetic charges with reference to helical toroidal magnetic systems. The particular geometry of the case study concerns the development of unconventional configurations of electrical machines. These configurations should reduce the magnetic flux changing during the machine operation. A small change of the magnetic flux reduces all the losses associated to the flux variation. The illustrated model for the computation of forces and moments also represents a starting point for a reliable analytical numerical evaluation of the external/internal actions applied to parts of other kinds of helical toroidal systems as stellarator and similar ones.
Citation
Roberto Muscia, "Evaluation of Forces and Torques Generated by Toroidal Helicoidal Magnetic Fields," Progress In Electromagnetics Research B, Vol. 74, 37-59, 2017.
doi:10.2528/PIERB16101103
References

1. Vanoost, D., H. De Gersem, J. Peuteman, G. Gielen, and D. Pissoort, "Nonlinear magnetostatic finite element formulation for models with radial symmetry," IEEE Transactions on Magnetics, Vol. 50, No. 50, Febraury 2014.

2. Stumberger, B., G. Stumberger, D. Dolinar, A. Hamler, and M. Trlep, "Evaluation of saturationand ˇ cross-magnetization effects in interior permanent-magnet synchronous motor," IEEE Transactions on Industry Applications, Vol. 39, No. 5, 1264-1271, September/October 2003.
doi:10.1109/TIA.2003.816538

3. Stumberger, B., G. Stumberger, and D. Dolinar, "Analysis of cross-saturation effects in a ˇ linear synchronous reluctance motor performed by finite elements method and measurements," Proceedings of 12th International Conference on Power Electronics and Motion Control, EPE-PEMC 2006, IEEE Conferences Publications, 2006.

4. Ruoho, S. and A. Arkkio, "Partial demagnetization of permanent magnets in electrical machines causedby an inclined field," IEEE Transactions on Magnetics, Vol. 44, No. 7, 1773-1778, July 2008.
doi:10.1109/TMAG.2008.921951

5. Fratila, R., A. Benabou, A. Tounzi, and J. C. Mipo, "Nonlinear modeling of magnetization loss in permanent magnets," IEEE Transactions on Magnetics, Vol. 48, No. 11, 2957-2960, November 2012.
doi:10.1109/TMAG.2012.2193878

6. Muscia, R., "Symmetry of magnetostatic fields generated by toroidal helicoidal magnets," IEEE Transactions on Magnetics, Vol. 51, No. 10, 7002614, October 2015.

7. Brouver, L., S. Caspi, D. Robin, and W. Wan, "3D toroidal field multipoles for curved accelerator magnets," Proceedings of PAC 2013, 907-909, Pasadena, CA, USA, 2013.

8. He, Y., Z. Yang, W. Ba, X. Zhang, G. Zhuang, X. Hu, Y. Pan, and Z. Liu, "Calculation of the poloidal magnetic field configuration for the J-TEXT tokamak," IEEE Transactions on Applied Superconductivity, Vol. 20, No. 3, 1840-1843, 2010.
doi:10.1109/TASC.2010.2043520

9. Maviglia, F., R. Albanese, M. De Magistris, P. J. Lomas, S. Minucci, F. G. Rimini, A. C. C. Sips, and P. C. De Vries, "Electromagnetic models of plasma breakdown in the JET tokamak," IEEE Transactions on Magnetics, Vol. 50, No. 2, Febraury 2014.
doi:10.1109/TMAG.2013.2282351

10. Jin, C. G., T. Yu, Y. Zhao, Y. Bo, C. Ye, J. S. Hu, L. J. Zhuge, S. B. Ge, X. M. Wu, H. T. Ji, and J. G. Li, "Helicon plasma discarge in a toroidal magnetic field of the tokamak," IEEE Transactions on Plasma Science, Vol. 39, No. 11, 3103-3107, November 2011.
doi:10.1109/TPS.2011.2161344

11. Albanese, R., G. Artaserse, F. Maviglia, F. Piccolo, and F. Sartori, "Identification of vertical instabilities in the JET tokamak," IEEE Transactions on Magnetics, Vol. 44, No. 6, June 2008.

12. Albanese, R., M. De Magistris, R. Fresa, F. Maviglia, and S. Minucci, "Numerical formulations for accurate magnetic field flow tracing in fusion tokamaks," Proceedings of the 9th International Conference on Computation in Electromagnetics (CEM 2014), 2014.

13. Beidler, D. C., E. Harmeyer, F. Herrnegger, J. Kisslinger, Y. Igitkhanov, and H. Wobig, "Stellarator fusion reactors — An overview," Proceedings of Toki Conference ITC12, December 2001.

14. Probert, P., "High-performance interpolation of stellarator magnetic fields," IEEE Transactions on Plasma Science, Vol. 39, No. 4, 1051-1054, April 2011.
doi:10.1109/TPS.2011.2105890

15. Neilson, G. H., D. A. Gates, P. J., Heitzenroeder, S. C. Prager, T. Stevenson, P. Titus, M. D. Williams, and M. C. Zarnstorf, "Facilities for Quasi-Axisymmetric Stellarator research," Proceedings of 25th Symposium on Fusion Engineering (SOFE), 2013 IEEE Conferences Publications, 2013.

16. Imagawa, S., A. Sagara, and Y. Kozaki, "Conceptual design of magnets with CIC conductors for LHD-type reactors FFHR2m," Plasma and Fusion Research, Vol. 3, S1050, 1-5, 2008.

17. Rummel, T., K. Riβe, G. Ehrke, K. Rummel, A. John, T. M¨onnich, K. P. Buscer, W. H. Fietz, R. Heller, O. Neubauer, and A. Panin, "The superconducting magnet system of the stellarator wendlstein 7-X," IEEE Transactions on Plasma Science, Vol. 40, No. 3, 769-776, March 2012.
doi:10.1109/TPS.2012.2184774

18. Clark, A. W., F. A. Volpe, and D. A. Spong, "Proto-circus tilted-coil tokamak-stellarator hybrid," Proceedings of 25th Symposium on Fusion Engineering (SOFE), 2013 IEEE Conferences Publications, 2013.

19. Dal Maso, A., Screws with curvilinear axis: A CAD analysis of coupling problems, Thesis, Supervisor: R. Muscia, Department of Engineering and Architecture, University of Trieste, Italy, 2014.

20. Chen, M., K. T. Chau, C. H. T. Lee, and C. Liu, "Design and analysis of a new axial-field magnetic variable gear using pole-changing permanent magnets," Progress In Electromagnetics Research, Vol. 153, 23-32, 2015.
doi:10.2528/PIER15072701

21. Boutora, Y., N. Takorabet, and R. Ibtiouen, "Analytical model on real geometries of magnet bars of surface permanent magnet slotless machine," Progress In Electromagnetics Research B, Vol. 66, 31-47, 2016.
doi:10.2528/PIERB15121503

22. Sun, X., S. Luo, L. Chen, R. Zhao, and Z. Yang, "Suspension force modelling and electromagnetic characteristics analysis of an interior bearingless permanent magnet synchronous motor," Progress In Electromagnetics Research B, Vol. 69, 31-45, 2016.
doi:10.2528/PIERB16051908

23. Brown, Jr., W. F.c, "Electric and magnetic forces: A direct calculation I," Am. J. Phys., Vol. 19, 290-304, 1951.
doi:10.1119/1.1932805

24. Brown, Jr., W. F., "Electric and magnetic forces: A direct calculation II," Am. J. Phys., Vol. 19, 333-350, 1951.
doi:10.1119/1.1932823

25. Muscia, R., "Equivalent magnetic charge in helicoidal magnets," J. Appl. Phys., Vol. 104, 103916, 2008.
doi:10.1063/1.2975154

26. Muscia, R., "Computation of the magnetic field generated by helical toroidal permanent magnets," Electromagnetics, Vol. 32, 8-30, 2012.
doi:10.1080/02726343.2012.633876

27. Furlani, E. P., Permanent Magnet and Electromechanical Devices, Material, Analysis, and Applications, 136, Eq. (3.118), Academic Press, 2001.

28. Furlani, E. P., "A formula for the levitation force between magnetic disks," IEEE Transactions on Magnetics, Vol. 29, No. 6, 4165-4169, November 1993.
doi:10.1109/20.280867

29. Furlani, E. P., "Formulas for the force and torque of axial coupling," IEEE Transactions on Magnetics, Vol. 29, No. 5, 2295-2301, September 1993.
doi:10.1109/20.231636

30. Furlani, E. P., R. Wang, and H. Kusnadi, "A three-dimensional model for computing the torque of radial couplings," IEEE Transactions on Magnetics, Vol. 31, No. 5, 2522-2526, September 1995.
doi:10.1109/20.406554

31. Mathematica 10.3, [Online] Available: http://www.wolfram.com/mathematica.