PIER B
 
Progress In Electromagnetics Research B
ISSN: 1937-6472
Home | Search | Notification | Authors | Submission | PIERS Home | EM Academy
Home > Vol. 72 > pp. 149-168

RETRIEVAL OF MAJOR GREENHOUSE GAS PROFILES WITH LEO-GROUND INFRARED LASER OCCULTATION (LGIO) TECHNIQUE

By M.-M. Chiou and J.-F. Kiang

Full Article PDF (2,101 KB)

Abstract:
A LEO-ground infrared laser occultation (LGIO) technique is proposed to retrieve the greenhouse gas (GHG) profiles around a specific location, including the analysis of key factors and practical issues that may affects its efficacy. A harmony search with ensemble consideration (HS-EC) algorithm is applied to retrieve the volume mixing ratio (VMR) profiles of H2O and three major GHGs, CO2, CH4 and N2O. The vertical resolution of retrieved GHG profiles is 1 km from ground level up to 20 km at height. The errors in VMR of H2O, CH4, N2O and CO2 are below 10, 5, 5 and 3%, respectively, up to 45 km above ground.

Citation:
M.-M. Chiou and J.-F. Kiang, "Retrieval of Major Greenhouse Gas Profiles with LEO-Ground Infrared Laser Occultation (LGIO) Technique," Progress In Electromagnetics Research B, Vol. 72, 149-168, 2017.
doi:10.2528/PIERB16110701

References:
1. Kursinski, E. R., G. A. Hajj, W. I. Bertiger, S. S. Leroy, T. K. Meehan, L. J. Romans, J. T. Schofeld, D. J. McCleese, W. G. Melbourne, and C. L. Thornton, "Initial results of radio occultation observations of Earth's atmosphere using the Global Positioning System," Science, Vol. 271, No. 5252, 1107-1110, 1996.
doi:10.1126/science.271.5252.1107

2. Schweitzer, S., "The ACCURATE concept and the infrared laser occultation technique: Mission design and assessment of retrieval performance," Sci. Rep., No. 34, Wegener Center for Climate and Global Change, Univ. of Graz, Jun. 2010.

3. Schweitzer, S., G. Kirchengast, M. Schwaerz, J. Fritzer, and M. E. Gorbunov, "Thermodynamic state retrieval from microwave occultation data and performance analysis based on end-to-end simulations," J. Geophys. Res. Atmos., Vol. 116, No. D10, D10301, May 2011.
doi:10.1029/2010JD014850

4. Proschek, V., G. Kirchengast, and S. Schweitzer, "Greenhouse gas profiling by infrared-laser and microwave occultation: Retrieval algorithm and demonstration results from end-to-end simulations," Atmos. Measure. Tech. Dis., Vol. 4, No. 2, 2273-2328, Oct. 2011.
doi:10.5194/amtd-4-2273-2011

5. Kirchengast, G. and S. Schweitzer, "Climate benchmark profiling of greenhouse gases and thermodynamic structure and wind from space," Geophys. Res. Lett., Vol. 38, No. 13, L13701, Jul. 2011.

6. Proschek, V., G. Kirchengast, C. Emde, and S. Schweitzer, "Greenhouse gas profiling by infrared-laser and microwave occultation in cloudy air: Results from end-to-end simulations," J. Geophys. Res. Atmos., Vol. 119, No. 21, 12,372-12,390, 2014.
doi:10.1002/2014JD021938

7. Pelliccia, F., F. Pacifici, S. Bonafoni, P. Basili, N. Pierdicca, P. Ciotti, and W. J. Emery, "Neural networks for arctic atmosphere sounding from radio occultation data," IEEE Trans. Geosci. Remote Sensing, Vol. 49, No. 12, 4846-4855, Dec. 2011.
doi:10.1109/TGRS.2011.2153859

8. Sokolovskiy, S., "Effect of super refraction on inversions of radio occultation signals in the lower troposphere," Radio Science, Vol. 38, No. 3, 1058, Jun. 2003.
doi:10.1029/2002RS002728

9. Von Engeln, A. and J. Teixeira, "A ducting climatology derived from the European centre for medium-range weather forecasts global analysis fields," J. Geophys. Res. Atmos., Vol. 109, No. D18, D18104, Sep. 2004.
doi:10.1029/2003JD004380

10. Zuffada, C., G. A. Hajj, and E. R. Kursiniski, "A novel approach to atmospheric profiling with a mountain-based or airborne GPS receiver," J. Geophys. Res. Atmos., Vol. 104, No. D20, 24435-24447, Oct. 1999.
doi:10.1029/1999JD900766

11. Wang, H. G., Z. S. Wu, S. F. Kang, and Z. W. Zhao, "Monitoring the marine atmospheric refractivity profiles by ground-based GPS occultation," IEEE Geosci. Remote Sensing Lett., Vol. 10, No. 4, 962-965, Jul. 2013.
doi:10.1109/LGRS.2012.2227294

12. Wu, X., X. Wang, and D. Lv, "Retrieval of vertical distribution of tropospheric refractivity through ground-based GPS observation," Adv. Atmos. Sci., Vol. 31, No. 1, 37-47, Jan. 2014.
doi:10.1007/s00376-013-2215-z

13. Lowry, A. R., C. Rocken, S. V. Sokolovskiy, and K. D. Anderson, "Vertical profiling of atmospheric refractivity from ground-based GPS," Radio Science, Vol. 37, No. 3, 13-1-19, Jun. 2002.
doi:10.1029/2000RS002565

14. Geem, Z. W., "Improved harmony search from ensemble of music players," Knowledge-based Intelligent Information and Engineering Systems, 86-93, Springer, 2006.
doi:10.1007/11892960_11

15. Geem, Z. W., "Optimal cost design of water distribution networks using harmony search," Engr. Optim., Vol. 38, No. 3, 259-277, 2006.
doi:10.1080/03052150500467430

16. Bonsch, G. and E. Potulski, "Measurement of the refractive index of air and comparison with modified Edlen's formulae," Metrologia, Vol. 35, 133-139, 1998.
doi:10.1088/0026-1394/35/2/8

17. http://www.ecmwf.int/,.

18. Anderson, G. P., S. A. Clough, F. X. Kneizys, J. H. Chetwynd, and P. Shettle, "AFGL atmospheric constituent profiles (0.120 km)," Environm. Res. Papers, No. 954, AFGL-TR-86-0110, Optical Physics Div., Air Force Geophys. Lab., Hanscom AFB, MA, USA, May 1986.

19. Schweitzer, S., G. Kirchengast, and V. Proschek, "Atmospheric influences on infrared-laser signals used for occultation measurements between low earth orbit satellites," Atmos. Measure. Tech. Dis., Vol. 4, No. 3, 2689-2747, Oct. 2011.
doi:10.5194/amtd-4-2689-2011

20. Jacobson, M. Z., Fundamentals of Atmospheric Modeling, Cambridge Univ. Press, 2005.
doi:10.1017/CBO9781139165389

21. Rothman, L. S., I. E. Gordon, Y. Babikov, A. Barbe, D. C. Benner, P. F. Bernath, M. Birk, L. Bizzocchi, V. Boudon, and L. R. Brown, "The HITRAN2012 molecular spectroscopic database," J. Quantitative Spectroscopy Radiative Transfer, Vol. 130, 4-50, 2013.
doi:10.1016/j.jqsrt.2013.07.002

22. Ortabasi, U. and H. Friedman, "Powersphere: A photovoltaic cavity converter for wireless power transmission using high power lasers," IEEE World Conf. Photovolt. Energy Conv., Vol. 1, 126-129, 2006.

23. Summerer, L. and O. Purcell, "Concepts for wireless energy transmission via laser," Euro. Space Agency (ESA)-Adv. Concepts Team, 2008.

24. Steinkopf, R., et al., "Metal mirrors with excellent figure and roughness," Int. Soc. Opt. Photon., Vol. 71020C, 1-20, 2008.

25. Yang, S.-H. and J.-F. Kiang, "Optimization of sparse linear arrays using harmony search algorithms," IEEE Trans. Antennas Propagat., Vol. 63, No. 11, 4732-4738, Nov. 2015.
doi:10.1109/TAP.2015.2476518

26. Ratnaweera, A., S. Halgamuge, and H. C. Watson, "Self-organizing hierarchical particle swarm optimizer with time-varying acceleration coefficients," IEEE Trans. Evolutionary Comput., Vol. 8, No. 3, 240-255, Jun. 2004.
doi:10.1109/TEVC.2004.826071

27. Jensen, A. S., M. S. Lohmann, H. H. Benzon, and A. S. Nielsen, "Full spectrum inversion of radio occultation signals," Radio Science, Vol. 38, No. 3, 6-1-15, May 2003.
doi:10.1029/2002RS002763

28. Salby, M. L., Fundamentals of Atmospheric Physics, Academic Press, 1996.


© Copyright 2010 EMW Publishing. All Rights Reserved