PIER Letters
 
Progress In Electromagnetics Research Letters
ISSN: 1937-6480
Home | Search | Notification | Authors | Submission | PIERS Home | EM Academy
Home > Vol. 2 > pp. 29-36

HYBRID CT-BEM METHOD ANALYSIS OF UNSCREENED SLAB LINES

By Q. Zheng, F. Xie, B. Yao, and W. Cai

Full Article PDF (254 KB)

Abstract:
A hybrid method of boundary element method (BEM) combined with conformal transformation (CT) is presented to calculate the capacitance of the unscreened slab lines. Conformal transformation transforms the infinite boundary boundary-value problem with the unscreened slab line into a finite boundary one that can be solved by the BEM, then the capacitance of the unscreened slab line is obtained by the BEM. Three representative computational examples, unscreened cylindrical single-bar slab line, unscreened rectangular single-bar slab line and unscreened cylindrical-bar coupled slab line, are given to validate the accuracy and efficiency of the CT-BEM hybrid method.

Citation:
Q. Zheng, F. Xie, B. Yao, and W. Cai, "Hybrid Ct-BEM Method Analysis of Unscreened Slab Lines," Progress In Electromagnetics Research Letters, Vol. 2, 29-36, 2008.
doi:10.2528/PIERL07121301

References:
1. Riblet, H. J., "An approximation for the characteristic impedance of shielded-slab line," IEEE Trans. Microwave Theory Tech., Vol. 27, 557-559, 1979.
doi:10.1109/TMTT.1979.1129670

2. Levy, R., "Conformal transformations combined with numerical techniques, with applications to coupled-bar problems," IEEE Trans. Microwave Theory Tech., Vol. 28, 369-375, 1980.
doi:10.1109/TMTT.1980.1130078

3. Wei, C., R. F. Harrington, J. R. Mautz, and T. K. Sarkar, "Multiconductor transmission lines in multilayered dielectric media," IEEE Trans. Microwave Theory Tech., Vol. 32, 439-450, 1984.
doi:10.1109/TMTT.1984.1132696

4. Stracca, G. B., G. Macchiarella, and M. Politi, "Numerical analysis of various configurations of slab lines," IEEE Trans. Microwave Theory Tech., Vol. 34, 359-363, 1986.
doi:10.1109/TMTT.1986.1133346

5. Fikioris, J. G. and J. L. Tsalamengas, "Exact solutions for rectangularly shielded lines by the Carleman-Vekua method," IEEE Trans. Microwave Theory Tech., Vol. 36, 659-675, 1988.
doi:10.1109/22.3570

6. Pan, S. G., "Characteristic impedance of a coaxial system consisting of circular and noncircular conductors," IEEE Trans. Microwave Theory Tech., Vol. 36, 917-921, 1988.
doi:10.1109/22.3612

7. Tailu, I. and R. L. Olesen, "Analysis of transmission line structures using a new image-mode Green's function," IEEE Trans. Microwave Theory Tech., Vol. 38, 782-784, 1990.
doi:10.1109/22.130975

8. Costamagna, E. and A. Fanni, "Characteristic impedance of coaxial structures of various cross section by conformal mapping," IEEE Trans. Microwave Theory Tech., Vol. 39, 1040-1043, 1991.
doi:10.1109/22.81678

9. Costamagna, E., A. Fanni, and M. Usai, "Slab line impedances revisited," IEEE Trans. Microwave Theory Tech., Vol. 41, 156-159, 1993.
doi:10.1109/22.210246

10. Abramowicz, A., "New model of coupled transmission lines," IEEE Trans. Microwave Theory Tech., Vol. 43, 1389-1392, 1995.
doi:10.1109/22.390201

11. Zheng, Q., W. Lin, F. Xie, and J. Li, "Multipole theory analysis of various configurations of slab lines," Microwave and Optical Technology Letters, Vol. 17, 197-200, 1998.
doi:10.1002/(SICI)1098-2760(19980220)17:3<197::AID-MOP14>3.0.CO;2-2

12. Zheng, Q., F. Xie, W. Cai, and L. Liang, "Multipole theory analysis of a slab line family with offset cylindrical bars," Microwave and Optical Technology Letters, Vol. 22, 260-262, 1999.
doi:10.1002/(SICI)1098-2760(19990820)22:4<260::AID-MOP13>3.0.CO;2-N

13. Lucido, M., G. Panariello, and F. Schettino, "Accurate and efficient analysis of stripline structures," Microwave and Optical Technology Letters, Vol. 43, 14-21, 2004.
doi:10.1002/mop.20361

14. Jiang, L. J. and W. C. Chew, "A complete variational method for capacitance extractions," Progress In Electromagnetics Research, Vol. 56, 19-32, 2006.
doi:10.2528/PIER05020402

15. Cheldavi, A. and P. Nayeri, "Circular symmetric multiconductor V-shaped transmission line," Journal of Electromagnetic Waves and Applications, Vol. 20, 461-474, 2006.
doi:10.1163/156939306776117045

16. Guney, K., C. Yildiz, S. Kaya, and M. Turkmen, "Artificial neural networks for calculating the characteristic impedance of air-suspended trapezoidal and rectangular-shaped microshild lines," Journal of Electromagnetic Waves and Applications, Vol. 20, 1161-1174, 2006.
doi:10.1163/156939306777442917

17. Yildiz, C., et al., "Neural models for coplanar strip line synthesis," Progress In Electromagnetics Research, Vol. 69, 127-144, 2007.
doi:10.2528/PIER06120802

18. Jiang, L. J. and W. C. Chew, "A complete variational method for capacitance extractions," Progress In Electromagnetics Research, Vol. 56, 19-32, 2006.
doi:10.2528/PIER06100401

19. Arshadi, A. and A. Cheldavi, "Simple and novel model for edged microstrip line (EMTL)," Progress In Electromagnetics Research, Vol. 65, 247-259, 2006.
doi:10.2528/PIER06093003

20. Cheldai, A. and P. Nayeri, "Analysis of V transmission lines response to external electromagnetic fields," Progress In Electromagnetics Research, Vol. 68, 297-315, 2007.
doi:10.1163/156939307779378844

21. Zheng, Q., et al., "Computation of the capacitance of the inhomogeneous insulated transmission line," Journal of Electromagnetic Waves and Applications, Vol. 21, 1565-1571, 2007.


© Copyright 2010 EMW Publishing. All Rights Reserved