Vol. 4
Latest Volume
All Volumes
PIERL 119 [2024] PIERL 118 [2024] PIERL 117 [2024] PIERL 116 [2024] PIERL 115 [2024] PIERL 114 [2023] PIERL 113 [2023] PIERL 112 [2023] PIERL 111 [2023] PIERL 110 [2023] PIERL 109 [2023] PIERL 108 [2023] PIERL 107 [2022] PIERL 106 [2022] PIERL 105 [2022] PIERL 104 [2022] PIERL 103 [2022] PIERL 102 [2022] PIERL 101 [2021] PIERL 100 [2021] PIERL 99 [2021] PIERL 98 [2021] PIERL 97 [2021] PIERL 96 [2021] PIERL 95 [2021] PIERL 94 [2020] PIERL 93 [2020] PIERL 92 [2020] PIERL 91 [2020] PIERL 90 [2020] PIERL 89 [2020] PIERL 88 [2020] PIERL 87 [2019] PIERL 86 [2019] PIERL 85 [2019] PIERL 84 [2019] PIERL 83 [2019] PIERL 82 [2019] PIERL 81 [2019] PIERL 80 [2018] PIERL 79 [2018] PIERL 78 [2018] PIERL 77 [2018] PIERL 76 [2018] PIERL 75 [2018] PIERL 74 [2018] PIERL 73 [2018] PIERL 72 [2018] PIERL 71 [2017] PIERL 70 [2017] PIERL 69 [2017] PIERL 68 [2017] PIERL 67 [2017] PIERL 66 [2017] PIERL 65 [2017] PIERL 64 [2016] PIERL 63 [2016] PIERL 62 [2016] PIERL 61 [2016] PIERL 60 [2016] PIERL 59 [2016] PIERL 58 [2016] PIERL 57 [2015] PIERL 56 [2015] PIERL 55 [2015] PIERL 54 [2015] PIERL 53 [2015] PIERL 52 [2015] PIERL 51 [2015] PIERL 50 [2014] PIERL 49 [2014] PIERL 48 [2014] PIERL 47 [2014] PIERL 46 [2014] PIERL 45 [2014] PIERL 44 [2014] PIERL 43 [2013] PIERL 42 [2013] PIERL 41 [2013] PIERL 40 [2013] PIERL 39 [2013] PIERL 38 [2013] PIERL 37 [2013] PIERL 36 [2013] PIERL 35 [2012] PIERL 34 [2012] PIERL 33 [2012] PIERL 32 [2012] PIERL 31 [2012] PIERL 30 [2012] PIERL 29 [2012] PIERL 28 [2012] PIERL 27 [2011] PIERL 26 [2011] PIERL 25 [2011] PIERL 24 [2011] PIERL 23 [2011] PIERL 22 [2011] PIERL 21 [2011] PIERL 20 [2011] PIERL 19 [2010] PIERL 18 [2010] PIERL 17 [2010] PIERL 16 [2010] PIERL 15 [2010] PIERL 14 [2010] PIERL 13 [2010] PIERL 12 [2009] PIERL 11 [2009] PIERL 10 [2009] PIERL 9 [2009] PIERL 8 [2009] PIERL 7 [2009] PIERL 6 [2009] PIERL 5 [2008] PIERL 4 [2008] PIERL 3 [2008] PIERL 2 [2008] PIERL 1 [2008]
2008-06-30
The Quasi-Yagi Antenna Subarray Fed by an Orthogonal T Junction
By
Progress In Electromagnetics Research Letters, Vol. 4, 109-112, 2008
Abstract
A 2×2 quasi-Yagi antenna array fed by a novel orthogonal T junction is presented. The orthogonal T junction is constructed with a traditional microstrip T junction, two planar microstrip to CPW transitions and two orthogonal microstrip to CPW transitions. The orthogonal T junction can be integrated with the quasi-Yagi array element directly. A 2×2 prototype operated from 7.6 GHz to 12 GHz is fabricated and measured.
Citation
X. C. Zhang, J .G. Liang, and Jun Wei Xie, "The Quasi-Yagi Antenna Subarray Fed by an Orthogonal T Junction," Progress In Electromagnetics Research Letters, Vol. 4, 109-112, 2008.
doi:10.2528/PIERL08050711
References

1. Kaneda, N., Y. Qian, and T. Itoh, "A novel Yagi-Uda dipole array fed by a microstrip-to-CPS transition," Asia Pacific Microwave Conf. Dig., No. 11, 1413-1416, December 1998.

2. Sor, J., Y. Qian, and T. Itoh, "A coplanar waveguide fed quasi-Yagi antenna," Electronics Letters, Vol. 36, No. 1, 1-2, January 2000.
doi:10.1049/el:20000132

3. Deal, W. R., J. Sor, Y. Qian, and T. Itoh, "A broadband uniplanar quasi-Yagi active array for power combining," 1999 IEEE Radio and Wireless Conference, 231-234, Denver, CO, August 1999.

4. Contolatis, A. and V. Sokolov, "90 RF veitical interconnects," Microwave Journal, Vol. 36, No. 6, 102-104, June 1993.

5. HydCn, L., S. Hagelin, P. Starskil, et al. "Anlysis and design of a vertical CPW transition between microstrip planes," IEEE MTT-S Digest, 727-730, 1997.