Vol. 7

Latest Volume
All Volumes
All Issues
2009-02-27

Analysis of a High-Gain Fabry-PÉRot Cavity Antenna with an FSS Superstrate: Effective Medium Approach

By Dongho Kim and Jae-Ick Choi
Progress In Electromagnetics Research Letters, Vol. 7, 59-68, 2009
doi:10.2528/PIERL09011801

Abstract

A new approach to analyze the behavior of a high-gain antenna covered with a frequency selective surface (FSS) superstrate is presented. Using an image theory and effective constitutive parameter retrieval, properties of impedance and a refractive index of the entire cavity structure are investigated. Through the analysis, we show that our antenna inherently operates in the medium whose maximum index of refraction is lower than ‘0.5'. Furthermore, we also demonstrate that the high-gain feature of the Fabry-Perot cavity antenna is not only due to satisfy a conventional cavity resonance condition, but also for a material of an effectively low index of refraction.

Citation


Dongho Kim and Jae-Ick Choi, "Analysis of a High-Gain Fabry-PÉRot Cavity Antenna with an FSS Superstrate: Effective Medium Approach," Progress In Electromagnetics Research Letters, Vol. 7, 59-68, 2009.
doi:10.2528/PIERL09011801
http://www.jpier.org/PIERL/pier.php?paper=09011801

References


    1. Sirier, C., R. Cheype, R. Chantalat, M. Thevenot, T. Monediere, A. Reineix, and B. Jecko, "1-D photonic bandgap resonator antenna," Microwave Opt. Tech. Lett., Vol. 29, No. 5, 312-315, 2001.
    doi:10.1002/mop.1164

    2. Ge, Y., K. P. Esselle, and Y. Hao, "Design of low-profile highgain EBG resonator antennas using a genetic algorithm," IEEE Antennas Wireless Propagat. Lett., Vol. 6, 480-483, 2007.
    doi:10.1109/LAWP.2007.907054

    3. Pirhadi, A., F. Keshmiri, M. Hakkak, and M. Tayarani, "Analysis and design of dual band high directive EBG resonator antenna using square loop FSS as superstrate layer," Progress In Electromagnetic Research, Vol. 70, 1-20, 2007.
    doi:10.2528/PIER07010201

    4. Leger, L., R. Granger, M. Thevenot, T. Monediere, and B. Jecko, "Multifrequency dielectric EBG antenna," Microwave Opt. Tech. Lett., Vol. 40, No. 5, 420-423, 2004.
    doi:10.1002/mop.11398

    5. Weily, A. R., T. S. Bird, and Y. H. Guo, "A reconfigurable highgain partially reflecting surface antenna," IEEE Trans. Antennas Propagat., Vol. 56, No. 11, 3382-3390, 2007.
    doi:10.1109/TAP.2008.2005538

    6. Gardelli, R., M. Albani, and F. Capolino, "Array thinning by using antennas in a Fabry-Perot cavity for gain enhancement," IEEE Trans. Antennas Propagat., Vol. 54, No. 7, 1979-1990, 2006.
    doi:10.1109/TAP.2006.877172

    7. Gu, Y. Y., W. X. Zhang, and Z. C. Ge, "Two improved Fabry-Perot resonator printed antennas using EBG superstrate and AMC substrate," Journal of Electromagnetic Waves and Applications, Vol. 41, No. 6, 719-728, 2007.
    doi:10.1163/156939307780749147

    8. Wu, B.-I., W. Wang, J. Pacheco, X. Chen, J. Lu, T. M. Grzegorczyk, J. A. Kong, P. Kao, P. A. Theophelakes, and M. J. Hogan, "Anisotropic metamaterials as antenna substrate to enhance directivity," Microwave Opt. Tech. Lett., Vol. 48, No. 4, 680-683, 2006.
    doi:10.1002/mop.21441

    9., CST Microwave Studio: Workflow & Solver Overview, CST Studio Suite 2008, CST-GmbH, 2008.

    10. Smith, D. R., D. C. Vier, Th. Koschny, and C. M. Soukoulis, "Electromagnetic parameter retrieval from inhomogeneous metamaterials," Physical Rev. E, Vol. 71, No. 036617, 2005.