PIER Letters
 
Progress In Electromagnetics Research Letters
ISSN: 1937-6480
Home | Search | Notification | Authors | Submission | PIERS Home | EM Academy
Home > Vol. 10 > pp. 11-18

MULTI-SLOTTED MICROSTRIP PATCH ANTENNA FOR WIRELESS COMMUNICATION

By M. T. Islam, M. N. Shakib, and N. Misran

Full Article PDF (336 KB)

Abstract:
A new design technique of microstrip patch antenna is presented in this paper. The proposed antenna design consists of inverted patch structure with air-filled dielectric, direct coaxial probe feed technique and the novel slotted shaped patch. The composite effect of integrating these techniques and by introducing the new multi-slotted patch, offer a low profile, high gain, broadband, and compact antenna element. A wide impedance bandwidth of 27.62% at -10 dB return loss is achieved. The maximum achievable gain is 9.41 dBi. The achievable experimental 3-dB beamwidth (HPBW) in the azimuth and elevation are 60.880 and 390 respectively at centre frequency.

Citation:
M. T. Islam, M. N. Shakib, and N. Misran, "Multi-Slotted Microstrip Patch Antenna for Wireless Communication," Progress In Electromagnetics Research Letters, Vol. 10, 11-18, 2009.
doi:10.2528/PIERL09060704

References:
1. Yang, S. L. S., A. A. Kishk, and K. F. Lee, "Frequency reconFIgurable U-slot microstrip patch antenna," IEEE Antennas Wireless Propag. Lett., Vol. 7, 127-129, 2008.
doi:10.1109/LAWP.2008.921330

2. Zhang, Y. P. and J. J. Wang, "Theory and analysis of differentially-driven microstrip antennas," IEEE Trans. Antennas Propag., Vol. 54, 1092-1099, 2006.
doi:10.1109/TAP.2006.872597

3. Pozar, D. M. and D. H. Schaubert, Microstrip Antennas: The Analysis and Design of Microstrip Antennas and Arrays, IEEE Press, New York, 1995.

4. Matin, M. M., B. S. Sharif, and C. C. Tsimenidis, "Probe fed stacked patch antenna for wideband applications," IEEE Trans. Antennas Propag., Vol. 55, No. 8, 2385-2388, 2007.
doi:10.1109/TAP.2007.901924

5. Wi, S. H., Y. B. Sun, I. S. Song, S. H. Choa, I. S. Koh, Y. S. Lee, and J. G. Yook, "Package-Level integrated antennas based on LTCC technology," IEEE Trans. Antennas Propag., Vol. 54, No. 8, 2190-2197, 2006.
doi:10.1109/TAP.2006.879191

6. Wi, S. H., J. M. Kim, T. H. Yoo, H. J. Lee, J. Y. Park, J. G. Yook, and H. K. Park, "Bow-tie-shaped meander slot antenna for 5 GHz application," Proc. IEEE Int. Symp. Antenna Propag., Vol. 2, 456-459, 2002.

7. Yang, F., X. Zhang, and Y. Rahmat-Samii, "Wide-band E-shaped patch antennas for wireless communications," IEEE Trans. Antennas Propag., Vol. 49, No. 7, 1094-1100, 2001.
doi:10.1109/8.933489

8. Luk, K. M., C. L. Mak, Y. L. Chow, and K. F. Lee, "Broadband microstrip patch antenna," Electron. Lett., Vol. 34, No. 15, 1442-1443, 1998.
doi:10.1049/el:19981009

9. Chair, R., C. L. Mak, K. F. Lee, K. M. Luk, and A. A. Kishk, "Miniature wide-band half U-slot and half E-shaped patch antennas," IEEE Trans. Antennas Propag., Vol. 53, 2645-2652, 2005.
doi:10.1109/TAP.2005.851852

10. Bao, X. L. and M. J. Ammann, "Small pacth/slot antenna with 53% input impedance bandwidth," Electron. Lett., Vol. 43, No. 3, 146-147, 2007.
doi:10.1049/el:20073279

11. Ang, B.-K. and B.-K. Chung, "A wideband E-shaped microstrip patch antenna for 5--6 GHz wireless communications," Progress In Electromagnetics Research, Vol. 75, 397-407, 2007.
doi:10.2528/PIER07061909

12. Khodaei, G. F., J. Nourinia, and C. Ghobadi, "A practical miniaturized U-slot patch antenna with enhanced bandwidth," Progress In Electromagnetics Research B, Vol. 3, 47-62, 2008.
doi:10.2528/PIERB07112201

13. Islam, M. T., N. Misran, and K. G. Ng, "A 4 × 1 L-probe fed inverted hybrid E-H microstrip patch antenna array for 3G application," American Journal of Applied Sciences, Vol. 4, No. 11, 897-901, 2007.

14. Misran, N., M. N. Shakib, M. T. Islam, and B. Yatim, "Design analysis of a slotted microstrip antenna for wireless communication," Proc. of World Academy of Science, Engineering and Technology, Vol. 37, 448-450, 2009.


© Copyright 2010 EMW Publishing. All Rights Reserved