Vol. 25
Latest Volume
All Volumes
PIERL 119 [2024] PIERL 118 [2024] PIERL 117 [2024] PIERL 116 [2024] PIERL 115 [2024] PIERL 114 [2023] PIERL 113 [2023] PIERL 112 [2023] PIERL 111 [2023] PIERL 110 [2023] PIERL 109 [2023] PIERL 108 [2023] PIERL 107 [2022] PIERL 106 [2022] PIERL 105 [2022] PIERL 104 [2022] PIERL 103 [2022] PIERL 102 [2022] PIERL 101 [2021] PIERL 100 [2021] PIERL 99 [2021] PIERL 98 [2021] PIERL 97 [2021] PIERL 96 [2021] PIERL 95 [2021] PIERL 94 [2020] PIERL 93 [2020] PIERL 92 [2020] PIERL 91 [2020] PIERL 90 [2020] PIERL 89 [2020] PIERL 88 [2020] PIERL 87 [2019] PIERL 86 [2019] PIERL 85 [2019] PIERL 84 [2019] PIERL 83 [2019] PIERL 82 [2019] PIERL 81 [2019] PIERL 80 [2018] PIERL 79 [2018] PIERL 78 [2018] PIERL 77 [2018] PIERL 76 [2018] PIERL 75 [2018] PIERL 74 [2018] PIERL 73 [2018] PIERL 72 [2018] PIERL 71 [2017] PIERL 70 [2017] PIERL 69 [2017] PIERL 68 [2017] PIERL 67 [2017] PIERL 66 [2017] PIERL 65 [2017] PIERL 64 [2016] PIERL 63 [2016] PIERL 62 [2016] PIERL 61 [2016] PIERL 60 [2016] PIERL 59 [2016] PIERL 58 [2016] PIERL 57 [2015] PIERL 56 [2015] PIERL 55 [2015] PIERL 54 [2015] PIERL 53 [2015] PIERL 52 [2015] PIERL 51 [2015] PIERL 50 [2014] PIERL 49 [2014] PIERL 48 [2014] PIERL 47 [2014] PIERL 46 [2014] PIERL 45 [2014] PIERL 44 [2014] PIERL 43 [2013] PIERL 42 [2013] PIERL 41 [2013] PIERL 40 [2013] PIERL 39 [2013] PIERL 38 [2013] PIERL 37 [2013] PIERL 36 [2013] PIERL 35 [2012] PIERL 34 [2012] PIERL 33 [2012] PIERL 32 [2012] PIERL 31 [2012] PIERL 30 [2012] PIERL 29 [2012] PIERL 28 [2012] PIERL 27 [2011] PIERL 26 [2011] PIERL 25 [2011] PIERL 24 [2011] PIERL 23 [2011] PIERL 22 [2011] PIERL 21 [2011] PIERL 20 [2011] PIERL 19 [2010] PIERL 18 [2010] PIERL 17 [2010] PIERL 16 [2010] PIERL 15 [2010] PIERL 14 [2010] PIERL 13 [2010] PIERL 12 [2009] PIERL 11 [2009] PIERL 10 [2009] PIERL 9 [2009] PIERL 8 [2009] PIERL 7 [2009] PIERL 6 [2009] PIERL 5 [2008] PIERL 4 [2008] PIERL 3 [2008] PIERL 2 [2008] PIERL 1 [2008]
2011-06-16
Coplanar Ring Divider with Wideband High Isolation Performance
By
Progress In Electromagnetics Research Letters, Vol. 25, 1-10, 2011
Abstract
In this letter, the design and measurement of a new ring power divider exhibiting wideband high isolation is presented. Coplanar techniques are used to achieve a compact and truly uniplanar design. The design is demonstrated by a prototype, operating at K-band, that has been monolithically fabricated using a GaAs MMIC process with airbridge technology. The measured insertion loss is 0.6 dB at the center design frequency of 25 GHz. The output port isolation is better than 20 dB across a wide bandwidth from 10 MHz to 50 GHz. The output amplitude and phase balance is within ±0.5 dB and ±2°, respectively, in the bandwidth from 10 MHz to 43 GHz.
Citation
Chong Li, Lai Bun Lok, Ata Khalid, and David R. S. Cumming, "Coplanar Ring Divider with Wideband High Isolation Performance," Progress In Electromagnetics Research Letters, Vol. 25, 1-10, 2011.
doi:10.2528/PIERL11041408
References

1. Wong, , S. W. and L. Zhu, "Ultra-wideband power divider with good in-band splitting and isolation performances," IEEE Microw. Wireless Components Lett., Vol. 18, No. 8, 518-520, Aug. 2008.
doi:10.1109/LMWC.2008.2001009

2. Chiu, L. and Q. Xue, "A parallel-strip ring power divider with high isolation and arbitrary power-dividing ratio," IEEE Trans. Microw. Theory Tech., Vol. 55, No. 11, 2419-2426, Nov. 2007.
doi:10.1109/TMTT.2007.908669

3. Wong, , K. W., L. Chiu, and Q. Xue, "Uniplanar power dividers using asymmetric coplanar striplines and slotlines," Proc. 38th European Microw. Conf., 337-340, Amsterdam, The Netherlands, Oct. 2008.

4. Yang, N., C. Caloz, and K. Wu, "Wideband phase-reversal antenna using a novel bandwidth enhancement technique," IEEE Trans. Antennas Propagation, Vol. 58, No. 9, 2823-2830, Sep. 2010.
doi:10.1109/TAP.2010.2052550

5. Chang, C.-Y., C.-W. Tang, and D.-C. Niu, "Ultra-broad-band doubly balanced star mixers using planar Mouw's hybrid junction," IEEE Trans. Microw. Theory Tech., Vol. 49, No. 6, 1077-1085, Jun. 2001.
doi:10.1109/22.925494

6. Hirota, , T., Y. Tarusawa, and H. Ogawa, "Uniplanar MMIC hybrids --- A proposed new MMIC structure," IEEE Trans. Microw. Theory Tech., Vol. 56, No. 6, 576-581, Jun. 1987.
doi:10.1109/TMTT.1987.1133706

7. Simons, R. N., Coplanar Waveguide Circuits, Components and Systems, Vol. 6, 163-165, John Wiley & Sons, Inc., 1997.

8. Basu, S. and L. Hayden, "An SOLR calibration for accurate measurement of orthogonal on-wafer DUTs," IEEE MTT-S Digest, 1335-1338, Denver, CO, USA, Jun. 1997.

9. Sun, , Y. and A. P. Freundorfer, "Broadband folded Wilkinson power combiner/splitter," IEEE Microw. Wireless Components Lett., Vol. 14, No. 6, 295-297, Jun. 2004.
doi:10.1109/LMWC.2003.821491

10. Kim, K., J. Byun, and H.-Y. Lee, "Substrate integraged waveguide Wilkinson power divider with improved isolation performance," Progress In Electromagnetics Research Letters, Vol. 19, 41-48, 2010.

11. Lan, X., P. Chang-Chien, F. Fong, D. Eaves, X. Zeng, and M. Kintis, "Ultra-wideband power divider using multi-wafer packaging technology," IEEE Microw. Wireless Components Lett., Vol. 21, No. 1, 46-48, Jan. 2011.
doi:10.1109/LMWC.2010.2091262