PIER Letters
Progress In Electromagnetics Research Letters
ISSN: 1937-6480
Home | Search | Notification | Authors | Submission | PIERS Home | EM Academy
Home > Vol. 29 > pp. 1-13


By E. I. Elsaidy, M. I. Dessouky, S. Khamis, and Y. A. Albagory

Full Article PDF (937 KB)

Concentric circular antenna array (CCAA) is synthesized to generate pencil beam with minimum side lobe level (SLL). The comprehensive learning particle swarm optimizer (CLPSO) is used for synthesizing a ten-ring CCAA with central element. This Synthesis is done by finding the optimum current excitation weights and interelement spacing of rings. The computational results show that sidelobe level is reduced to -40.5 dB with narrow beamwith about 4.1o.

E. I. Elsaidy, M. I. Dessouky, S. Khamis, and Y. A. Albagory, "Concentric Circular Antenna Array Synthesis Using Comprehensive Learning Particle Swarm Optimizer," Progress In Electromagnetics Research Letters, Vol. 29, 1-13, 2012.

1. Godara, L. C., "Applications of antenna arrays to mobile communications," Proceedings of the IEEE, Vol. 85, No. 7, 1031-1060, 1997.

2. Fletcher, P. N. and P. Darwood, "Beamforming for circular and semicircular array antennas for low-cost wireless lan data communications systems," IEE Proceedings ---Microwaves, Antennas and Propagation, Vol. 145, No. 2, 153-158, 1998.

3. Li, Y., , K. C. Ho and C. Kwan, "A novel partial adaptive broad-band beamformer using concentric ring array," 2004 Proceedings IEEE International Conference on Acoustics, Speech, and Signal Processing, ICASSP'04, Vol. 2, No. 177, 2004.

4. Chan, S. C., C. K. S. Pun, and , "On the design of digital broadband beamformer for uniform circular array with frequency invariant characteristics," IEEE International Symposium on Circuits and Systems, 2002, ISCAS 2002, Vol. 1, I-693-I-696, 2002.

5. Chan, S. C. and H. H. Chen, "Uniform concentric circular arrays with frequency-invariant characteristics mdash; theory, design, adaptive beamforming and DOA estimation," IEEE Transactions on Signal Processing, Vol. 55, No. 1, 165-177, 2007.

6. Dessouky, M. I. , H. A. Sharshar, and Y. A. Albagory, "EĀ±cient sidelobe reduction technique for small-sized concentric circular arrays," Progress In Electromagnetics Research, Vol. 65, 187-200, 2006.

7. Dessouky, M. I., H. A. Sharshar, and Y. A. Albagory, "Optimum normalized-Gaussian tapering window for side lobe reduction in uniform concentric circular arrays," Progress In Electromagnetics Research, Vol. 69, 35-46, 2007.

8. Dessouky, , M., , H. Sharshar, and Y. Albagory, "An approach for Dolph-Chebyshev uniform concentric circular arrays," Journal of Electromagnetic Waves and Applications, Vol. 21, No. 6, 781-794, 2007.

9. Johnson, J. M. and Y. Rahmat Samii, "Genetic algorithms in electromagnetics," Antennas and Propagation Society International Symposium, 1996, AP-S, Digest, Vol. 2, 1480-148, 1996.

10. Robinson, J. and Y. Rahmat-Samii, "Particle swarm optimization in electromagnetics," IEEE Transactions on Antennas and Propagation, Vol. 52, No. 2, 397-407, 2004.

11. Haupt , R. L., "Optimized element spacing for low sidelobe concentric ring arrays," IEEE Transactions on Antennas and Propagation, Vol. 56, No. 1, 266-268, 2008.

12. Mandal, D., D. Sadhu, and S. P. Ghoshal, "Thinned concentric circular array antennas synthesis using improved particle swarm optimization," Proc. of International Conference on Advances in Computer Engineering, ACEEE, 2011.

13. Chatterjee, A., G. K. Mahanti, and P. R. S. Mahapatra, "Optimum ring spacing and interelement distance for sidelobe reduction of a uniform concentric ring array antenna using differential evolution algorithm," IEEE Communication Systems, ICCS, 2010.

14. Boeringer, D. W. and D. H.Werner, "Particle swarm optimization versus genetic algorithms for phased array synthesis," IEEE Transactions on Antennas and Propagation, Vol. 52, No. 3, 771-779, 2004.

15. Shavit, R. and I. Taig, "Array pattern synthesis using neural networks with mutual coupling effect," IEE Proceedings --- Microwaves, Antennas and Propagation, Vol. 152, No. 5, 354-358, 2005.

16. Liang, J. J., "Comprehensive learning particle swarm optimizer for global optimization of multimodal functions," IEEE Transactions on Evolutionary Computation, Vol. 10, No. 3, 281-295, 2006.

17. Kennedy, J. and R. Eberhart, "Particle swarm optimization," Proceedings IEEE International Conference on Neural Networks, Vol. 4, 1942-1948, 1995.

18. Goudos, , S. K., V. Moysiadou, T. Samaras, K. Siakavara, and J. N. Sahalos, "Application of a comprehensive learning particle swarm optimizer to unequally spaced linear array synthesis with sidelobe level suppression and null control," IEEE Antennas and Wireless Propagation Letters, Vol. 9, 125-129, 2010.

19. Clerc , M., "The swarm and the queen: Towards a deterministic and adaptive particle swarm optimization ," IEEE Proceedings of the 1999 Congress on Evolutionary Computation, 1999, CEC'99, Vol. 3, 1999.

20. Basak, A., S. Pal, S. Das, and A. Abraham, "Circular antenna array synthesis with a differential invasive weed optimization algorithm," 10th IEEE International Conference on Hybrid Intelligent Systems, HIS, 153-158, 2010.

© Copyright 2010 EMW Publishing. All Rights Reserved