1. Namara, D. A., C. W. I. Pistorious, and J. A. G. Maherbe, C. W. I. Pistorious, and J. A. G. Maherbe, Artech House, 1990.
2. Gomez, R., L. E. Garcia Castillo, F. Saez de Adana, and M. Salazar-Palma, "A novel hybrid FEM high frequency technique for the analysis of scattering and radiation problems," Journal of Electromagnetic Waves and Applications, Vol. 18, No. 7, 939-956, 2004.
doi:10.1163/156939304323105763 Google Scholar
3. Polka, L. A., C. A. Balanis, and A. C. Polycarpou, "High-frequency methods for multiple diffraction modeling: Application and comparison," Journal of Electromagnetic Waves and Applications, Vol. 8, No. 9-10, 1223-1246, 1994.
doi:10.1163/156939394X01019 Google Scholar
4. Catedra, M. F., J. Perez, F. Saez de Adana, and O. Gutierrez, "Efficient ray-tracing techniques for three-dimensional analysis of propagation in mobile communications: Application to picocell and microcell scenarios," IEEE Antennas and Propagation Magazine, Vol. 40, No. 2, 15-28, 1998.
doi:10.1109/74.683539 Google Scholar
5. Rustako, A. J., N. Amitay, G. J. Owens, and R. S. Roman, "Radio propagation at microwave frequencies for line-of-sight microcellular mobile and personal communications," IEEE Transactions on Vehicular Technology, Vol. 40, No. 2, 203-210, 1991.
doi:10.1109/25.69989 Google Scholar
6. Perez, J., J. A. Saiz, O. M. Conde, R. P. Torres, M. F. Catedra, "Analysis of antennas on board arbitrary structures modeled by NURBS surfaces," IEEE Transactions on Antennas and Propagation, Vol. 45, No. 6, 1045-1053, 1997.
doi:10.1109/8.585754 Google Scholar
7. Lozano, L., F. Saez de Adana, and M. F. Catedra, "Ray-tracing acceleration techniques to compute diffraction and double and triple e®ects in RCS prediction methods based on physical optics," PIERS Proceedings, 573-577, Tokyo, Japan, Aug. 2-5, 2006. Google Scholar
8. Wang, N., Y. Zhang, and C. H. Liang, "Creeping ray-tracing algorithm of UTD method based on NURBS models with the source on surface," Journal of Electromagnetic Waves and Applications, Vol. 20, No. 14, 1981-1990, 2006.
doi:10.1163/156939306779322602 Google Scholar
9. Nocedal, J., "Theory of algorithms for unconstrained optimization," Acta Numerica, Vol. 1, 199-242, Department of Electrical Engineering and Computer Science, Northwestern University,1992. Google Scholar
10. Byrne, L., "A first course in optimization,", 1, 494, Department of Mathematical Sciences, University of Massachusetts Lowell, 2012. Google Scholar
11. Ming, C., Z. Yu, and C. H. Liang, "Calculation of the field distribution near electrically large NURBS surfaces with physical optics method," Journal of Electromagnetic Waves and Applications, Vol. 19, No. 11, 1511-1524, 2005.
doi:10.1163/156939305775701886 Google Scholar
12. Gonzalez, I., O. Gutierrez, F. Saez de Adana, and M. Felipe Catedra, "Computation of the scattering of arbitrary shape bodies modeled by parametric surfaces using the multilevel fast multipole method," PIERS Proceedings, 672-676, Tokyo, Japan, Aug. 2-5, 2006. Google Scholar
13. Adana, F. S., O. Gutierrez, I. Gonzalez, J. Perez, and M. F. Catedra, "General method for the ray tracing on convex bodies," Applied Computational Electromagnetics Society Journal, Vol. 16, No. 1, 20-26, 2001. Google Scholar
14. Shewchuk, R., "An introduction to the conjugate gradient method without the agonizing pain,", 1, 64, School of Computer Science, Carnegie Mellon University, 1994. Google Scholar
15. Pytlak, R., "Conjugate gradient methods for non-convex problems," Non-convex Optimization and Its Applications, 63,108, Springer-Verlag, Berlin, Heidelberg, 2009 . Google Scholar
16. Trgo, A., "On numerical approximation of non-convex variational problems using stochastic optimization algorithm,", 1, 23, Department of Mathematical Sciences, Carnegie Mellon University, 1995. Google Scholar
17. Robinson, J. and Y. Rahmat-Samii, "Particle swarm optimization in electromagnetics," IEEE Transactions on Antennas and Propagation, Vol. 52, No. 2, 2004.
doi:10.1109/TAP.2004.823969 Google Scholar
18. Chamaani, S., S. A. Mirta, M. Teshnehlab, M. A. Shooredeli, V. Seydi, and , "Modified multi-objective particle swarm optimization for electromagnetic absorber design," Progress In Electromagnetics Research, Vol. 79, 353-366, 2008.
doi:10.2528/PIER07101702 Google Scholar
19. Poyatos, D., D. Escot, I. Montiel, I. Gonzalez, F. Saez de Adana, and M. F. Catedra, "Evaluation of particle swam optimization applied to single snapshot direction of arrival estimation," Journal of Electromagnetic Waves and Applications, Vol. 22, No. 16, 2251-2258, 2008.
doi:10.1163/156939308787522528 Google Scholar
20. Rubio, A., O. Gutierrez Blanco, F. Saez de Adana, and M. F. Catedra, "Calculation of GTD/UTD reflection points over parametric surfaces using particle swarm optimization," Progress In Electromagnetics Research Symposium, 276, Prague, Czech Republic, Aug. 27-30, 2007. Google Scholar
21. Salakhutdinov, R., "E±cient optimization algorithms for learning,", 1, 84, Department of Computer Science, University of Toronto, 2003. Google Scholar
22. Salakhutdinov, R., "On the convergence of bound optimization algorithms," Proc. 19th Conference in Uncertainty in Artificial Intelligence , 509-516, University of Toronto, 2003. Google Scholar
23. Balanis, C. A., Advanced Engineering Electromagnetics, John Wiley and Sons, 1989.