PIER Letters
Progress In Electromagnetics Research Letters
ISSN: 1937-6480
Home | Search | Notification | Authors | Submission | PIERS Home | EM Academy
Home > Vol. 37 > pp. 73-82


By X. Wei, P. Wang, and Y. Shi

Full Article PDF (387 KB)

In this paper, a compact three-order mixed-cross coupled bandpass filter (BPF) with enhanced frequency selectivity is proposed. Multiple transmission zeros (TZs) can be obtained near the passband for high frequency selectivity by introducing mixed-cross coupling between the nonadjacent resonators. The frequency-dependent mixed-cross coupling matrix of the proposed filter is presented to explain the occurrence of the TZs caused by mixed-cross coupling. A new BPF centered at 2.7 GHz with 11.5% fractional bandwidth has been designed and fabricated to verify the validity of the proposed method. The measurement result shows four finite TZs in the stopband, located at 1.74 GHz with 52.16 dB rejection, 2.53 GHz with 24.67 dB rejection, 3.83 GHz with 47.52 dB rejection, and 7.75 GHz with 54.83 dB rejection, respectively. The circuit only occupies 6.2×7.6 mm2.

X. Wei, P. Wang, and Y. Shi, "Compact Mixed-Cross Coupled Bandpass Filter with Enhanced Frequency Selectivity," Progress In Electromagnetics Research Letters, Vol. 37, 73-82, 2013.

1. Lu, J.-C., C.-K. Liao, and C.-Y. Chang, "Microstrip parallel-coupled filters with cascade trisection and quadruplet responses," IEEE Trans. Microw. Theory Tech., Vol. 56, No. 9, 2101-2110, 2008.

2. Hong, J. S. and M. J. Lancaster, "Couplings of microstrip square open-loop resonators for cross-coupled planar microwave filters," IEEE Trans. Microw. Theory Tech, Vol. 44, No. 12, 2099-2109, 1996.

3. Liao, C. K. and C. Y. Chang, "Modified parallel-coupled filter with two independently controllable upper stopband transmission zeros," IEEE Microw. Wireless Compon. Lett., Vol. 15, No. 12, 841-843, 2005.

4. Cai, L. Y., G. Zeng, H. C. Yang, and Y. Z. Cai, "Compact bandpass filter for RFID reader applications," Electronics Lett., Vol. 47, No. 7, 445-447, 2011.

5. Hong, J.-S., E. P. McErlean, and B. M. Karyamapudi, "A high-temperature superconducting filter for future mobile telecommunication systems," IEEE Trans. Microw. Theory Tech., Vol. 53, No. 6, 1976-1981, 2005.

6. Amari, S. and J. Bornemann, "Maximum number of finite transmission zeros of coupling resonator filters with source/load multi-resonator coupling and a given topology," Microwave Conference, 1175-1177, 2000.

7. Montejo-Garai, J. R., "Synthesis of N-even order symmetric filters with N transmission zeros by means of source-load cross coupling," Electron. Lett., Vol. 36, No. 3, 232-233, 2000.

8. Shaman, H. and J.-S. Hong, "A novel ultra-wideband (UWB) bandpass filter (BPF) with pairs of transmission zeroes," IEEE Microw. Wirelss Compon. Lett., Vol. 17, No. 2, 121-123, 2007.

9. Athukorala, L. and D. Budimir, "Compact filter configurations using concentric microstrip open-loop resonators," IEEE Microw. Wirelss Compon. Lett., Vol. 22, No. 5, 245-247, 2012.

10. Dai, G. and M. Xia, "Novel miniaturized bandpass filters using spiral-shaped resonators and window feed structures," Progress In Electromagnetics Research, Vol. 100, 235-243, 2010.

11. Gomez-Garcia, R. and J. I. Alonso, "Design of sharp-rejection and low-loss wide-band planar filters using signal-interference techniques," IEEE Microw. Wirel. Compon. Lett., Vol. 15, No. 8, 530-532, 2005.

12. Gomez-Garcia, R., "High-rejection wideband signal-interference microstrip filters using rat-race couplers," Electron. Lett., Vol. 42, No. 20, 1162-1163, 2006.

13. Ma, K. X., J. G. Ma, K. S. Yeo, and M. A. Do, "A compact size coupling controllable filter with separate electric and coupling paths," IEEE Trans. Microw. Theory Tech., Vol. 54, No. 3, 1113-1119, 2006.

14. Chu, Q.-X. and H. Wang, "A compact open-loop filter with mixed electric and magnetic coupling," IEEE Trans. Microw. Theory Tech., Vol. 56, No. 2, 431-439, 2008.

15. Wei, X. B., Y. Shi, P. Wang, J. X. Liao, Z. Q. Xu, and B. C. Yang, "Design of compact, wide stopband bandpass filter using stepped impedance resonator," Journal of Electromagnetic Waves and Applications, Vol. 26, No. 8-9, 1095-1104, 2012.

16. Amari, S., U. Rosenberg, and J. Bornemann, "Adaptive synthesis and design of resonator filters with source/load-multi-resonator coupling," IEEE Trans. Microw. Theory Tech., Vol. 50, No. 8, 1969-1978, 2002.

17. Lin, S.-C., C.-H. Wang, and C. H. Chen, "Novel patch-via-spiral resonators for the development of miniaturized bandpass filters with transmission zeros," IEEE Trans. Microw. Theory Tech., Vol. 55, No. 1, 137-146, 2007.

18. Amari, S., "Synthesis of cross coupled resonator filters using an analytical gradient based optimization technique," IEEE Trans. Microw. Theory Tech., Vol. 48, No. 9, 1559-1564, 2000.

19. Szydlowski, L., A. Lamecki, and M. Mrozowski, "Coupled-resonator filters with frequency-dependent couplings: Coupling matrix synthesis," IEEE Microw. Wirel. Compon. Lett., Vol. 22, No. 6, 312-314, 2012.

20. Hong, J. S. and M. J. Lancaster, Microstrip Filters for RF/Microwave Applications, Wiley, New York, 2001.

21. Hsu, C.-L., C.-H. Yu, and J.-T. Kuo, "Control of transmission zero by mixed-coupling in a two-stage coupled-resonator filter," Proceedings of Asia-Paci¯c Microwave Conference, 1-4, 2007.

© Copyright 2010 EMW Publishing. All Rights Reserved