PIER Letters
 
Progress In Electromagnetics Research Letters
ISSN: 1937-6480
Home | Search | Notification | Authors | Submission | PIERS Home | EM Academy
Home > Vol. 42 > pp. 97-107

A CLOSED ALGEBRA OF CLEBSCH FORMS DERIVED FROM WHITTAKER SUPER-POTENTIALS AND APPLICATIONS IN ELECTROMAGNETIC RESEARCH.

By T. E. Raptis

Full Article PDF (143 KB)

Abstract:
A type of closed exterior algebra in R3 under the cross product is revealed to hold between differential forms from the three Whittaker scalar potentials, associated with the fields of a moving electron. A special algebraic structure is revealed in the context of Clebsch reparametrization of these scalars, and a special prescription for the construction of permutation invariant electromagnetic fields is given as well as a superposition with parallel electric and magnetic components.

Citation:
T. E. Raptis, "A Closed Algebra of Clebsch Forms Derived from Whittaker Super-Potentials and Applications in Electromagnetic Research.," Progress In Electromagnetics Research Letters, Vol. 42, 97-107, 2013.
doi:10.2528/PIERL13071904

References:
1. Whittaker, E. T., "On an expression of the electromagnetic field due to electrons by means of two scalar potential functions," Proc. London Math. Soc., Vol. 1, 367-372, 1904.
doi:10.1112/plms/s2-1.1.367

2. Bateman, H., The solution of partial differential equations by means of definite integrals, Proc. London Math. Soc., Vol. 1, No. 1, 451-458, 1904.

3. Ruse, H. S., "The geometry of the electromagnetic six-vector, the electromagnetic energy and the Hertzian tensor," C. R. Congr. Internat. Math., Vol. 2, 232, 1936.

4. Ruse, H. S., "On Whittaker's electromagnetic scalar potentials," Quart. J. Math. Soc., Vol. 8, No. 1, 148-160, 1937.
doi:10.1093/qmath/os-8.1.148

5. Kawaguchi, H. and S. Murata, "Hertzian tensor potential which results in Lienard-Wiechert potential," J. Phys. Soc. Jap., Vol. 58, No. 3, 848-855, 1989.
doi:10.1143/JPSJ.58.848

6. Kawaguchi, H. and T. Honma, "On the super-potentials for Lienard-Wiechert potentials in far fields," J. Phys. A: Math. Gen., Vol. 25, 4437, 1992.
doi:10.1088/0305-4470/25/16/019

7. Kawaguchi, H. and T. Honma, "Superpotentials of Lienard-Wiechert potentials in far fields: The relativistic case," J. Phys. A: Math. Gen., Vol. 26, No. 17, 4431, 1993.
doi:10.1088/0305-4470/26/17/047

8. Kawaguchi, H. and T. Honma, "On a double fiber bundle structure of the Lienard-Wiechert superpotentials," J. Tech. Phys., Vol. 35, No. 1-2, 61-65, 1994.

9. Kawaguchi, H. and T. Honma, "On the electrodynamics of the Lienard-Wiechert superpotentials," J. Phys. A: Math. Gen., Vol. 28, No. 2, 469, 1995.
doi:10.1088/0305-4470/28/2/021

10. Marmanis, H., Analogy between the electromagnetic and hydrodynamic equations: Applications to turbulence, Ph.D.Thesis, Brown University, 1999.

11. Martins, A. A. and M. J. Pinheiro, "Fluidic electrodynamics: Approach to electromagnetic propulsion," Phys. Fluids, Vol. 21, 097103, 2001.

12. Bateman, H., Partial Differential Equations of Mathematical Physics, Cambridge Univ. Press, 1959.

13. Stern, D. P., "Euler potentials," Am. J. Phys., Vol. 38, No. 4, 494-501, 1970.
doi:10.1119/1.1976373

14. Asanov, G. S., "Clebsch representations and energy-momentum of classical electromagnetic and gravitational fields," Found. Phys., Vol. 10, No. 11-12, 855-863, 1980.
doi:10.1007/BF00708684

15. Marsden, J. and A. Weinstein, "Coadjoint orbits, vortices and Clebsch variables for incompressible fluids," Physica D, Vol. 7, 305-323, 1983.
doi:10.1016/0167-2789(83)90134-3

16. Ranada, A. F., "Interplay of topology and quantization: Topological energy quantization in a cavity," Phys. Lett. A, Vol. 310, 434, 2003.
doi:10.1016/S0375-9601(03)00443-2

17. Uehara, K., et al., "Non-transverse electromagnetic fields with parallel electric and magnetic fields," J. Phys. Soc. Jap., Vol. 58, No. 10, 3570-3575, 1989.
doi:10.1143/JPSJ.58.3570

18. Shimoda, K., et al., "Electromagnetic plane waves with parallel electric and magnetic fields E||B in free space," Am. J. Phys., Vol. 58, No. 4, 394, 1990.
doi:10.1119/1.16482

19. Gray, J. E., "Electromagnetic waves with E parallel to B," J. Phys. A: Math. Gen., Vol. 25, No. 20, 5373, 1992.
doi:10.1088/0305-4470/25/20/017


© Copyright 2010 EMW Publishing. All Rights Reserved