PIER Letters
 
Progress In Electromagnetics Research Letters
ISSN: 1937-6480
Home | Search | Notification | Authors | Submission | PIERS Home | EM Academy
Home > Vol. 47 > pp. 97-102

A MODIFIED GENERALIZED MEMORY POLYNOMIAL MODEL FOR RF POWER AMPLIFIERS

By G. Sun, C. Yu, Y. Liu, S. Li, and J. Li

Full Article PDF (290 KB)

Abstract:
A modified generalized memory polynomial model (MGMP) is proposed for RF power amplifiers (PAs). The MGMP model is derived by applying complexity-reduced technique to the generalized memory polynomial model (GMP), and the least square (LS) algorithm is used for coefficient extraction. The proposed MGMP model is assessed using a GaN Class-F PA driven by two modulated signals (a WCDMA 1001 signal and a single carrier 16 QAM signal with 20 MHz bandwidth). The experimental results demonstrate that the MGMP model outperforms the memory polynomial (MP) model and the generalized memory polynomial (GMP) model. Compared with MP model, the MGMP model shows a normalized mean square error (NMSE) improvement of 2.13 dB in forward modeling, average adjacent channel power ratio (ACPR) improvement of 2.62/2.11 dB in the DPD application with almost identical number of model coefficients. In contrast with the GMP model, the MGMP model can achieve comparable forward modeling and linearization performance results, but reduces approximately 40% of coefficients.

Citation:
G. Sun, C. Yu, Y. Liu, S. Li, and J. Li, "A Modified Generalized Memory Polynomial Model for RF Power Amplifiers," Progress In Electromagnetics Research Letters, Vol. 47, 97-102, 2014.
doi:10.2528/PIERL14060307

References:
1. El Maazouzi, L., A. Mediavilla, and P. Colantonio, "A contribution to linearity improvement of a highly efficient PA for WIMAX applications," Progress In Electromagnetics Research, Vol. 119, 59-84, 2011.
doi:10.2528/PIER11051602

2. Hashmi, M. S., Z. S. Rogojan, and F. M. Ghannouchi, "A flexible dual-inflection point RF predistortion linearizer for microwave power amplifiers," Progress In Electromagnetics Research C, Vol. 13, 1-18, 2010.
doi:10.2528/PIERC10012609

3. Hashmi, M. S., Z. S. Rogojan, S. R. Nazifi, and F. M. Ghannouchi, "A broadband dual-inflection point RF predistortion linearizer using backward reflection topology," Progress In Electromagnetics Research C, Vol. 13, 121-134, 2010.
doi:10.2528/PIERC10032801

4. Kim, J. and K. Konstantinou, "Digital predistortion of wideband signals based on power amplifier model with memory," Electron. Lett., Vol. 37, No. 23, 1417-1418, 2001.
doi:10.1049/el:20010940

5. Ding, L., G. T. Zhou, D. R. Morgan, Z. Ma, J. S. Kenney, J. Kim, and C. R. Giardina, "A robust digital baseband predistorter constructed using memory polynomials," IEEE Trans. Commun., Vol. 52, No. 1, 159-165, Jan. 2004.
doi:10.1109/TCOMM.2003.822188

6. Morgan, D. R., Z. Ma, J. Kim, M. G. Zierdt, and J. Pastalan, "A generalized memory polynomial model for digital predistortion of RF power amplifiers," IEEE Trans. Signal Process., Vol. 54, No. 10, 3852-3860, Oct. 2006.
doi:10.1109/TSP.2006.879264

7. Du, T., C. Yu, Y. Liu, J. Gao, S. Li, and Y. Wu, "A new accurate Volterra-based model for behavioral modeling and digital predistortion of RF power amplifiers," Progress In Electromagnetics Research C, Vol. 29, 205-218, 2012.
doi:10.2528/PIERC12032707

8. Sun, G., C. Yu, Y. Liu, S. Li, and J. Li, "An accurate complexity-reduced simplified Volterra series for RF power amplifiers," Progress In Electromagnetics Research C, Vol. 47, 157-164, 2014.
doi:10.2528/PIERC13121201

9. Liu, Y.-J., J. Zhou, W. Chen, and B.-H. Zhou, "A robust augmented complexity-reduced generalized memory polynomial for wideband RF power amplifiers," IEEE Trans. Ind. Electron., Vol. 61, No. 5, 2389-2401, May 2014.
doi:10.1109/TIE.2013.2270217

10. Rawat, M., F. M. Ghannouchi, and K. Rawat, "Three-layered biased memory polynomial for dynamic modeling and predistortion of transmitters with memory," IEEE Trans. Circuits Syst. I. Reg. Papers, Vol. 6, No. 3, 768-777, Mar. 2013.
doi:10.1109/TCSI.2012.2215740

11. Zhu, A., J. C. Pedro, and T. J. Brazil, "Dynamic deviation reduction based Volterra behavioral modeling of RF power amplifiers," IEEE Trans. Microw. Theory Tech., Vol. 54, No. 12, 4323-4332, 2006.
doi:10.1109/TMTT.2006.883243

12. Yu, C. and Y. Liu, "Triangular memory polynomial predistorter," 5th International Conference on Wireless Communications, Networking and Mobile Computing, WiCom'09, 1-4, Beijing, Sep. 24-26, 2009.


© Copyright 2010 EMW Publishing. All Rights Reserved