Vol. 50
Latest Volume
All Volumes
PIERL 119 [2024] PIERL 118 [2024] PIERL 117 [2024] PIERL 116 [2024] PIERL 115 [2024] PIERL 114 [2023] PIERL 113 [2023] PIERL 112 [2023] PIERL 111 [2023] PIERL 110 [2023] PIERL 109 [2023] PIERL 108 [2023] PIERL 107 [2022] PIERL 106 [2022] PIERL 105 [2022] PIERL 104 [2022] PIERL 103 [2022] PIERL 102 [2022] PIERL 101 [2021] PIERL 100 [2021] PIERL 99 [2021] PIERL 98 [2021] PIERL 97 [2021] PIERL 96 [2021] PIERL 95 [2021] PIERL 94 [2020] PIERL 93 [2020] PIERL 92 [2020] PIERL 91 [2020] PIERL 90 [2020] PIERL 89 [2020] PIERL 88 [2020] PIERL 87 [2019] PIERL 86 [2019] PIERL 85 [2019] PIERL 84 [2019] PIERL 83 [2019] PIERL 82 [2019] PIERL 81 [2019] PIERL 80 [2018] PIERL 79 [2018] PIERL 78 [2018] PIERL 77 [2018] PIERL 76 [2018] PIERL 75 [2018] PIERL 74 [2018] PIERL 73 [2018] PIERL 72 [2018] PIERL 71 [2017] PIERL 70 [2017] PIERL 69 [2017] PIERL 68 [2017] PIERL 67 [2017] PIERL 66 [2017] PIERL 65 [2017] PIERL 64 [2016] PIERL 63 [2016] PIERL 62 [2016] PIERL 61 [2016] PIERL 60 [2016] PIERL 59 [2016] PIERL 58 [2016] PIERL 57 [2015] PIERL 56 [2015] PIERL 55 [2015] PIERL 54 [2015] PIERL 53 [2015] PIERL 52 [2015] PIERL 51 [2015] PIERL 50 [2014] PIERL 49 [2014] PIERL 48 [2014] PIERL 47 [2014] PIERL 46 [2014] PIERL 45 [2014] PIERL 44 [2014] PIERL 43 [2013] PIERL 42 [2013] PIERL 41 [2013] PIERL 40 [2013] PIERL 39 [2013] PIERL 38 [2013] PIERL 37 [2013] PIERL 36 [2013] PIERL 35 [2012] PIERL 34 [2012] PIERL 33 [2012] PIERL 32 [2012] PIERL 31 [2012] PIERL 30 [2012] PIERL 29 [2012] PIERL 28 [2012] PIERL 27 [2011] PIERL 26 [2011] PIERL 25 [2011] PIERL 24 [2011] PIERL 23 [2011] PIERL 22 [2011] PIERL 21 [2011] PIERL 20 [2011] PIERL 19 [2010] PIERL 18 [2010] PIERL 17 [2010] PIERL 16 [2010] PIERL 15 [2010] PIERL 14 [2010] PIERL 13 [2010] PIERL 12 [2009] PIERL 11 [2009] PIERL 10 [2009] PIERL 9 [2009] PIERL 8 [2009] PIERL 7 [2009] PIERL 6 [2009] PIERL 5 [2008] PIERL 4 [2008] PIERL 3 [2008] PIERL 2 [2008] PIERL 1 [2008]
2014-12-12
An Investigation on the Use of ITU-R P.1411-7 in 802.11N Path Loss Modelling
By
Progress In Electromagnetics Research Letters, Vol. 50, 91-98, 2014
Abstract
Free space path loss modelling is a model used to model path loss propagation for Wireless Local Area Networks. In some cases, the estimation of path loss by the FSL model can be inaccurate as FSL modelling does not take into account the effect of multipath propagation. The International Telecommunication Union Recommendation, ITU-R P.1411-7 provides prediction methods for the planning of short-range outdoor radio communication systems and radio local area networks in the frequency range 300 MHz to 100 GHz. This recommendation further proposes a location variability correction, ρ, which models the standard deviation of field strength due to small scale fading. This paper investigates the feasibility of using the ITU-R P.1141-7 Recommendation to estimate the path loss for 802.11n signals experienced by pedestrians in a suburban environment. Received signal strengths were collected from field experiments, and the measured path loss was compared with estimated path loss values. The results show that for areas with high levels of small scale fading, the ITU-R P.1141-7 was able to estimate the path loss for IEEE 802.11n signals with a higher accuracy of 5-7 dB than the FSL model.
Citation
Siva Priya Thiagarajah, Shamini Pillay Narayanasamy Pillay, Manogaran Saargunawathy, and Dinesh Madhavan, "An Investigation on the Use of ITU-R P.1411-7 in 802.11N Path Loss Modelling," Progress In Electromagnetics Research Letters, Vol. 50, 91-98, 2014.
doi:10.2528/PIERL14101601
References

1. Hajlaoui, N. and I. Jabri, "On the performance of IEEE 802.11n protocol," 2012 5th Joint IFIP Wireless and Mobile Networking Conference (WMNC), 64-69, 2012.
doi:10.1109/WMNC.2012.6416145

2. Paul, T. K. and T. Ogunfunmi, "Wireless LAN comes of age: Understanding the IEEE 802.11n amendment," IEEE Circuits and Systems Magazine, Vol. 8, No. 1, 28-54, 2008.
doi:10.1109/MCAS.2008.915504

3. Zhang, K., et al. "The study of multi-user diversity technology over the MIMO-OFDM system," 4th International Conference on Wireless Communications, Networking and Mobile Computing, WiCOM’08, 1-4, 2008.
doi:10.1002/wcm.422

4. Shittu, W. A., et al. "Prediction of received signal power and propagation path loss in open/rural environments using modified free-space loss and Hata models," IEEE International RF and Microwave Conference, RFM 2008, 126-130, 2008.
doi:10.1109/RFM.2008.4897406

5. Sklar, B., "Rayleigh fading channels in mobile digital communication systems. I. Characterization," IEEE Communications Magazine, Vol. 35, No. 7, 90-100, 1997.
doi:10.1109/35.601747

6. Almorox-González, P. and J. I. Alonso, "Software tool for planning wireless local area networks (WLAN)," The European Conference on Wireless Technology, 387-390, 2005.

7. Li, M. and D. Wang, "Indoor coverage performance comparison between IEEE 802.11g and IEEE 802.11ah of wireless nodes in M2M network," Internet of Vehicles --- Technologies and Services, Vol. 8662, 211-217, Springer International Publishing, 2014.

8. Lopez-Perez, D. and M. Folke, "3 system-level simulation and evaluation models," Heterogeneous Cellular Networks: Theory, Simulation and Deployment, 57, 2013.
doi:10.1017/CBO9781139149709.006

9. International Telecommunications Union, Radiocommunications Bureau "Recommendation ITU-R P.1411-5 Propagation Data and Predictions,", 2013.

10. Thiagarajah, S. P., A. Ting, D. Chieng, M. Y. Alias, and T. S. Wei, "User data rate enhancement using heterogeneous LTE-802.11n offloading in urban area. Methods for the planning of short-range outdoor radiocommunication systems and radio local area networks in the frequency range 300 MHz to 100 GHz," IEEE Symposium on Wireless Technology and Applications (ISWTA), 11-16, Sep. 2013.
doi:10.1109/ISWTA.2013.6688750

11. Sommer, C. and F. Dressler, "Using the right two-ray model? A measurement based evaluation of PHY models in VANETs," Proc. ACM MobiCom., 1-3, 2011.

12. International Telecommunications Union, Radiocommunications Bureau "Recommendation ITU-R P.1546-5 method for point-to-area predictions for terrestrial services in the frequency range 30 MHz to 3000 MHz,", 2013.

13. Datasheet of Wireless N Router TL-WR841HP, , www.tp-link.com.

14. Othman, A. R., A. A. Abd Aziz, K. Pongot, N. A. Shairi, and M. N. Mohd Nor, "Design and sensitivity analysis of direct conversion RF receiver for IEEE 802.11a WLAN system at 5.8 GHz frequency," 2012 IEEE Student Conference on Research and Development (SCOReD), 262-265, Dec. 5-6, 2012.

15. Salo, J., L. Vuokko, H. M. El-Sallabi, and P. Vainikainen, "An additive model as a physical basis for shadow fading," IEEE Transactions on Vehicular Technology, Vol. 56, No. 1, 13-26, Jan. 2007.
doi:10.1109/TVT.2006.883797