PIER Letters
 
Progress In Electromagnetics Research Letters
ISSN: 1937-6480
Home | Search | Notification | Authors | Submission | PIERS Home | EM Academy
Home > Vol. 70 > pp. 129-138

IMPLEMENTATION OF THE PARALLEL HIGHER-ORDER FDTD WITH CONVOLUTION PML

By Y. Liu, P. Zhang, and Y.-W. Chen

Full Article PDF (865 KB)

Abstract:
In this paper, a parallel Higher-order FDTD (HO-FDTD) algorithm is described. Moreover, a novel implementation of convolution PML (CPML) is presented for the HO-FDTD method. A printed microstrip patch antenna is designed to analyze the feasibility of the parallel algorithm and the absorbing performance of the CPML. Moreover, the proposed algorithm is used to deal with the large-scale computational model of the vaulted tunnel. The simulation results show that the adopted parallel strategy is feasible. and the CPML performs well in the HO-FDTD scheme.

Citation:
Y. Liu, P. Zhang, and Y.-W. Chen, "Implementation of the Parallel Higher-Order FDTD with Convolution PML," Progress In Electromagnetics Research Letters, Vol. 70, 129-138, 2017.
doi:10.2528/PIERL17082203

References:
1. Young, J. L., "A higher order FDTD method for EM propagation in a collisionless cold plasma," IEEE Trans. Antennas Propagat., Vol. 44, No. 9, 1283-1289, Sep. 1996.
doi:10.1109/8.535387

2. Hadi, M. F. and M. Piket-May, "A modified FDTD(2, 4) scheme or modeling electrically large structures with high-phase accuracy," IEEE Trans. Antennas Propagat., Vol. 45, No. 2, 254-264, Feb. 1997.
doi:10.1109/8.560344

3. Teixeira, F. L. and W. C. Chew, "Lattice electromagnetic theory from a topological viewpoint," J. Math. Phys., Vol. 40, No. 1, 169-187, 1999.
doi:10.1063/1.532767

4. Lan, K., Y. Liu, and W. Lin, "A higher order(2, 4) scheme for reducing dispersion in FDTD algorithm," IEEE Trans. Electromagnetic Compatibility, Vol. 41, No. 2, 160-165, May 1999.
doi:10.1109/15.765109

5. Zhang, J. and Z. Chen, "Low-dispersive super high-order FDTD schemes," IEEE Antenna Propagat. Soc. Int. Symp., Vol. 3, 1510-1513, Salt Lake City, UT, Jul. 2000.

6. Hirono, T., W. Lui, S. Seki, and Y. Yoshikuni, "A three-dimensional fourth-order finite-difference time domain scheme using a symplectic integrator propagator," IEEE Trans. Microw. Theory Tech., Vol. 49, No. 9, 1640-1648, Sep. 2001.
doi:10.1109/22.942578

7. Prokopidis, K. P. and T. D. Tsiboukis, "Higher-order FDTD(2, 4) scheme for accurate simulations in lossy dielectrics," Electron. Lett., Vol. 39, No. 11, 835-836, May 2003.
doi:10.1049/el:20030545

8. Shao, Z. H. and Z. X. Shen, "A generalized higher order finite-difference time-domain method and its application in guided-wave problems," IEEE Trans. Microw. Theory Tech., Vol. 51, No. 3, 856-861, Mar. 2003.
doi:10.1109/TMTT.2003.808627

9. Chun, S. T. and J. Y. Choe, "A higher order FDTD method in integral formulation," IEEE Trans. Antennas Propagat., Vol. 53, No. 7, 2237-2246, Jul. 2005.
doi:10.1109/TAP.2005.850708

10. Wang, S., Z. Shao, and G. Wen, "A modified high order FDTD method based on wave equation," IEEE Microwave and Wireless Components Letters, Vol. 17, No. 5, 316-318, May 2007.
doi:10.1109/LMWC.2007.895685

11. Chen, Y. W., Y. W. Liu, B. Chen, and P. Zhang, "A cylindrical higher order FDTD algorithm with PML and quasi PML," IEEE Trans. Antenna Propagat., Vol. 61, No. 9, 4695-4704, Sept. 2013.
doi:10.1109/TAP.2013.2267720

12. Liu, Y. W., Y. W. Chen, P. Zhang, and Z. X. Liu, "A spherical higher-order FDTD algorithm with PML," Chinese Physics B, Vol. 23, No. 12, 2014.

13. Taflove, A., Computational Electrodynamics: The Finite-Difference Time-Domain Method, Artech House, Norwood, MA, 1995.

14. Guiffaut, C. and K. Mahdjoubi, "A parallel FDTD algorithm using the MPI library," IEEE Antennas and Propagation Magazine, Vol. 43, 94-103, Apr. 2001.
doi:10.1109/74.924608

15. Roden, J. A. and S. D. Gedney, "Convolution PML (CPML): An efficient FDTD implementation of the CFS-PML for arbitrary media," Microwave Opt. Technol. Lett., Vol. 27, No. 5, 334-339, Dec. 2000.
doi:10.1002/1098-2760(20001205)27:5<334::AID-MOP14>3.0.CO;2-A

16. Roberts, A. R. and J. Joubert, "PML absorbing boundary condition for higher-order FDTD schemes," Electron. Lett., Vol. 33, No. 1, 32-34, 1997.
doi:10.1049/el:19970062

17. Fujii, M., M. M. Tentzeris, and P. Russer, "Performance of nonlinear dispersive APML in high-order FDTD schemes," IEEE MTT-S International Microwave Symposium Digest, 1129-1132, Jun. 2003.

18. Yu, W. H. and R. Mittra, "A conformal finite difference time domain technique for modeling curved dielectric surfaces," IEEE Microwave and Wireless Components Letters, Vol. 11, No. 1, 25-27, Jan. 2001.
doi:10.1109/7260.905957


© Copyright 2010 EMW Publishing. All Rights Reserved