Vol. 71
Latest Volume
All Volumes
PIERL 119 [2024] PIERL 118 [2024] PIERL 117 [2024] PIERL 116 [2024] PIERL 115 [2024] PIERL 114 [2023] PIERL 113 [2023] PIERL 112 [2023] PIERL 111 [2023] PIERL 110 [2023] PIERL 109 [2023] PIERL 108 [2023] PIERL 107 [2022] PIERL 106 [2022] PIERL 105 [2022] PIERL 104 [2022] PIERL 103 [2022] PIERL 102 [2022] PIERL 101 [2021] PIERL 100 [2021] PIERL 99 [2021] PIERL 98 [2021] PIERL 97 [2021] PIERL 96 [2021] PIERL 95 [2021] PIERL 94 [2020] PIERL 93 [2020] PIERL 92 [2020] PIERL 91 [2020] PIERL 90 [2020] PIERL 89 [2020] PIERL 88 [2020] PIERL 87 [2019] PIERL 86 [2019] PIERL 85 [2019] PIERL 84 [2019] PIERL 83 [2019] PIERL 82 [2019] PIERL 81 [2019] PIERL 80 [2018] PIERL 79 [2018] PIERL 78 [2018] PIERL 77 [2018] PIERL 76 [2018] PIERL 75 [2018] PIERL 74 [2018] PIERL 73 [2018] PIERL 72 [2018] PIERL 71 [2017] PIERL 70 [2017] PIERL 69 [2017] PIERL 68 [2017] PIERL 67 [2017] PIERL 66 [2017] PIERL 65 [2017] PIERL 64 [2016] PIERL 63 [2016] PIERL 62 [2016] PIERL 61 [2016] PIERL 60 [2016] PIERL 59 [2016] PIERL 58 [2016] PIERL 57 [2015] PIERL 56 [2015] PIERL 55 [2015] PIERL 54 [2015] PIERL 53 [2015] PIERL 52 [2015] PIERL 51 [2015] PIERL 50 [2014] PIERL 49 [2014] PIERL 48 [2014] PIERL 47 [2014] PIERL 46 [2014] PIERL 45 [2014] PIERL 44 [2014] PIERL 43 [2013] PIERL 42 [2013] PIERL 41 [2013] PIERL 40 [2013] PIERL 39 [2013] PIERL 38 [2013] PIERL 37 [2013] PIERL 36 [2013] PIERL 35 [2012] PIERL 34 [2012] PIERL 33 [2012] PIERL 32 [2012] PIERL 31 [2012] PIERL 30 [2012] PIERL 29 [2012] PIERL 28 [2012] PIERL 27 [2011] PIERL 26 [2011] PIERL 25 [2011] PIERL 24 [2011] PIERL 23 [2011] PIERL 22 [2011] PIERL 21 [2011] PIERL 20 [2011] PIERL 19 [2010] PIERL 18 [2010] PIERL 17 [2010] PIERL 16 [2010] PIERL 15 [2010] PIERL 14 [2010] PIERL 13 [2010] PIERL 12 [2009] PIERL 11 [2009] PIERL 10 [2009] PIERL 9 [2009] PIERL 8 [2009] PIERL 7 [2009] PIERL 6 [2009] PIERL 5 [2008] PIERL 4 [2008] PIERL 3 [2008] PIERL 2 [2008] PIERL 1 [2008]
2017-10-27
Combination of Two Measurement Techniques to Expand the Measurements Frequency Range of the Dielectric Permittivity
By
Progress In Electromagnetics Research Letters, Vol. 71, 77-82, 2017
Abstract
Usually, knowledge of material's dielectric properties, as a function of frequency, represents a key issue in scienti c elds and several industrial applications. At LNE-CETIAT, in partnership with Institut Fresnel UMR 72792, a set of capacitive and coaxial cells, dedicated to the measurement of complex dielectric permittivity, have been developed. The present paper focuses on the experimental calibration and validation of two cells using low and medium dielectric loss materials. It gives the main measurement results obtained on three di erent materials: decanol alcohol, polytetra uoroethylene (PTFE) and polyvinyl chloride (PVC) in the frequency range from 3 MHz up to 2 GHz.
Citation
Mohamed Wajdi Ben Ayoub, Eric Georgin, Jean-Francois Rochas, and Pierre Sabouroux, "Combination of Two Measurement Techniques to Expand the Measurements Frequency Range of the Dielectric Permittivity," Progress In Electromagnetics Research Letters, Vol. 71, 77-82, 2017.
doi:10.2528/PIERL17090602
References

1. Wagner, N., et al. "Broadband electromagnetic characterization of two-port rod based transmission lines for dielectric spectroscopy of soil," First European Conference on Moisture Measurement, Aquametry 2010, Vol. 1, 228-237, Weimar, Oct. 2010.

2. Gorriti, A. G. and E. C. Slob, "Comparison of the different reconstruction techniques of permittivity from S-parameters," IEEE Transactions on Geoscience and Remote Sensing, 2051-2057, Sep. 2005.
doi:10.1109/TGRS.2005.854312

3. James, B.-J., "Transmission/reflection and short-circuit line permittivity measurements,", National Institute of Standards and Technology (U.S.), 1990.

4. Scott, A. H. and J. R. Kinard, "Polymeric materials for dielectric reference specimens,", National Bureau of Standards, 1967.

5. Ba, D. and P. Sabouroux, "EpsiMu, a toolkit for permittivity and permeability measurement in microwave domain at real time of all materials: Applications to solid and semisolid materials," Microwave and Optical Technology Letters, Vol. 52, No. 12, 2643-2648, 2010.
doi:10.1002/mop.25570

6. Roussy, G. and J. A. Pearce, Foundations and Industrial Applications of Microwave and Radio Frequency Fields: Physical and Chemical Processes, Wiley, Aug. 1995.

7. Georgin, E., et al. "First steps in development of a new transfer standard, for moisture measurement, based on radio-frequency wave and micro-wave," 17th International Congress of Metrology, 15008, EDP Sciences, 2015.
doi:10.1051/metrology/20150015008

8. Stuchly, M. A. and S. S. Stuchly, "Coaxial line reflection methods for measuring dielectric properties of biological substances at radio and microwave frequencies --- A review," IEEE Transactions on Instrumentation and Measurement, Vol. 29, No. 3, 176-183, Sep. 1980.
doi:10.1109/TIM.1980.4314902

9. Ben Ayoub, M. W., et al. "New approach for measuring moisture in solids using radio frequency and microwave," ISEMA Conference, 2016.

10. Roussy, G., et al. "A critical look at permittivity and permeability measurement methods in waveguide. An elementary data fusion approach," Journal of Microwave Power, Feb. 2010.

11. Nicolson, A. M. and G. F. Ross, "Measurement of the intrinsic properties of materials by time-domain techniques," IEEE Transactions on Instrumentation and Measurement, Vol. 19, No. 4, 377-382, Nov. 1970.
doi:10.1109/TIM.1970.4313932

12. Weir, W. B., "Automatic measurement of complex dielectric constant and permeability at microwave frequencies," Proceedings of the IEEE, Vol. 62, No. 1, 33-36, Jan. 1974.
doi:10.1109/PROC.1974.9382

13. Georget, E., R. Abdeddaim, and P. Sabouroux, "A quasi-universal method to measure the electromagnetic characteristics of usual materials in the microwave range," Comptes Rendus Physique, Vol. 15, No. 5, 448-457, 2014.
doi:10.1016/j.crhy.2014.02.003