Vol. 85
Latest Volume
All Volumes
PIERL 122 [2024] PIERL 121 [2024] PIERL 120 [2024] PIERL 119 [2024] PIERL 118 [2024] PIERL 117 [2024] PIERL 116 [2024] PIERL 115 [2024] PIERL 114 [2023] PIERL 113 [2023] PIERL 112 [2023] PIERL 111 [2023] PIERL 110 [2023] PIERL 109 [2023] PIERL 108 [2023] PIERL 107 [2022] PIERL 106 [2022] PIERL 105 [2022] PIERL 104 [2022] PIERL 103 [2022] PIERL 102 [2022] PIERL 101 [2021] PIERL 100 [2021] PIERL 99 [2021] PIERL 98 [2021] PIERL 97 [2021] PIERL 96 [2021] PIERL 95 [2021] PIERL 94 [2020] PIERL 93 [2020] PIERL 92 [2020] PIERL 91 [2020] PIERL 90 [2020] PIERL 89 [2020] PIERL 88 [2020] PIERL 87 [2019] PIERL 86 [2019] PIERL 85 [2019] PIERL 84 [2019] PIERL 83 [2019] PIERL 82 [2019] PIERL 81 [2019] PIERL 80 [2018] PIERL 79 [2018] PIERL 78 [2018] PIERL 77 [2018] PIERL 76 [2018] PIERL 75 [2018] PIERL 74 [2018] PIERL 73 [2018] PIERL 72 [2018] PIERL 71 [2017] PIERL 70 [2017] PIERL 69 [2017] PIERL 68 [2017] PIERL 67 [2017] PIERL 66 [2017] PIERL 65 [2017] PIERL 64 [2016] PIERL 63 [2016] PIERL 62 [2016] PIERL 61 [2016] PIERL 60 [2016] PIERL 59 [2016] PIERL 58 [2016] PIERL 57 [2015] PIERL 56 [2015] PIERL 55 [2015] PIERL 54 [2015] PIERL 53 [2015] PIERL 52 [2015] PIERL 51 [2015] PIERL 50 [2014] PIERL 49 [2014] PIERL 48 [2014] PIERL 47 [2014] PIERL 46 [2014] PIERL 45 [2014] PIERL 44 [2014] PIERL 43 [2013] PIERL 42 [2013] PIERL 41 [2013] PIERL 40 [2013] PIERL 39 [2013] PIERL 38 [2013] PIERL 37 [2013] PIERL 36 [2013] PIERL 35 [2012] PIERL 34 [2012] PIERL 33 [2012] PIERL 32 [2012] PIERL 31 [2012] PIERL 30 [2012] PIERL 29 [2012] PIERL 28 [2012] PIERL 27 [2011] PIERL 26 [2011] PIERL 25 [2011] PIERL 24 [2011] PIERL 23 [2011] PIERL 22 [2011] PIERL 21 [2011] PIERL 20 [2011] PIERL 19 [2010] PIERL 18 [2010] PIERL 17 [2010] PIERL 16 [2010] PIERL 15 [2010] PIERL 14 [2010] PIERL 13 [2010] PIERL 12 [2009] PIERL 11 [2009] PIERL 10 [2009] PIERL 9 [2009] PIERL 8 [2009] PIERL 7 [2009] PIERL 6 [2009] PIERL 5 [2008] PIERL 4 [2008] PIERL 3 [2008] PIERL 2 [2008] PIERL 1 [2008]
2019-06-13
Monthly Cloud Free LOS Time Series Generator for Optical Satellite Links
By
Progress In Electromagnetics Research Letters, Vol. 85, 25-30, 2019
Abstract
In this letter, a space time synthesizer for the generation of monthly cloud free line of sight (CFLOS) statistics is presented. The proposed monthly time series generator is based on the synthesis of 3D cloud fields using Stochastic Differential Equations. Monthly Integrated Liquid Water Content (ILWC) statistics are used as inputs, and the temporal and spatial correlation of clouds is considered. The monthly variability of the cloud coverage is predicted, and the CFLOS is estimated taking into account the elevation angle of the slant path and the altitude of the station for high altitude optical ground stations. Finally, CFLOS numerical results are reported, and some significant conclusions are drawn.
Citation
Nikolaos K. Lyras, Theodore T. Kapsis, and Athanasios Panagopoulos, "Monthly Cloud Free LOS Time Series Generator for Optical Satellite Links," Progress In Electromagnetics Research Letters, Vol. 85, 25-30, 2019.
doi:10.2528/PIERL18122103
References

1. Kaushal, H. and G. Kaddoum, "Optical communication in space: Challenges and mitigation techniques," IEEE Comm. Surv. & Tut., Vol. 19, No. 1, 57-96, Aug. 2016.
doi:10.1109/COMST.2016.2603518

2. Fuchs, C. and F. Moll, "Ground station network optimization for space-to ground optical communication links," IEEE/OSA J. of Opt. Comm. and Net., Vol. 7, No. 12, 1148-1159, Dec. 2015.
doi:10.1364/JOCN.7.001148

3. Poulenard, S., et al. "Ground segment design for broadband geostationary satellite with optical feeder link," J. Opt. Commun. Netw., Vol. 7, No. 4, 325-336, 2015.
doi:10.1364/JOCN.7.000325

4. Fuchs, C., et al. "Performance estimation of optical LEO downlinks," IEEE Journal on Selected Areas in Communications, Vol. 36, No. 5, 1074-1085, May 2018.
doi:10.1109/JSAC.2018.2832831

5. Lyras, N. K., et al. "Cloud attenuation statistics prediction from Ka-band to optical frequencies: Integrated liquid water content field synthesizer," IEEE Transactions on Antennas and Propagation, Vol. 65, No. 1, 319-328, Jan. 2017.
doi:10.1109/TAP.2016.2630602

6. Lyras, N. K., et al. "Cloud free line of sight prediction modeling for optical satellite communication networks," IEEE Communications Letters, Vol. 21, No. 7, 1537-1540, Jul. 2017.
doi:10.1109/LCOMM.2017.2681073

7. Lyras, N. K., et al. "Optimum monthly based selection of ground stations for optical satellite networks," IEEE Communications Letters, Vol. 22, No. 6, 1192-1195, Jun. 2018.
doi:10.1109/LCOMM.2018.2819174

8. Luini, L. and C. Capsoni, "Modeling high-resolution 3-D cloud fields for earth-space communication systems," IEEE Transactions on Antennas and Propagation, Vol. 62, No. 10, 5190-5199, Oct. 2014.
doi:10.1109/TAP.2014.2341297

9. ITU-R Recommendation P.1853-1 "Tropospheric attenuation time series synthesis,", ITU-R P.1853-1, Geneva, Switzerland, 2012.

10. ITU-R Recommendation P.840-6 "Attenuation due to clouds and fog,", Geneva, Switzerland, 2013.

11. Perlot, N., T. Dreischer, C. M. Weinert, and J. Perdigues, "Optical GEO feeder link design," Proc. Future Netw. Mobile Summit (FutureNetw), 1-8, Jul. 2012.