PIER Letters
 
Progress In Electromagnetics Research Letters
ISSN: 1937-6480
Home | Search | Notification | Authors | Submission | PIERS Home | EM Academy
Home > Vol. 87 > pp. 29-37

DIRECTIONAL ADAPTIVE MUSIC-LIKE ALGORITHM UNDER SYMMETRIC α-STABLE DISTRIBUTED NOISE

By N. Borijindargoon and B. P. Ng

Full Article PDF (346 KB)

Abstract:
An algorithm named MUSIC-like algorithm was previously proposed as an alternative method to the MUltiple SIgnal Classification (MUSIC) algorithm for direction-of-arrival (DOA) estimation. Without requiring explicit model order estimation, it was shown to have robust performance particularly in low signal-to-noise ratio (SNR) scenarios. In this letter, the working principle of a relaxation parameter β, a parameter which was introduced into the formulation of the MUSIC-like algorithm, is provided based on geometrical interpretation. To illustrate its robustness, the algorithm will be examined under symmetric α-stable distributed noise environment. An adaptive framework is then developed and proposed in this letter to further optimize the algorithm. The proposed adaptive framework is compared with the original MUSIC-like, MUSIC, FLOM-MUSIC, and SSCM-MUSIC algorithms. A notable improvement in terms of targets resolvability of the proposed method is observed under different impulse noise scenarios as well as different SNR levels.

Citation:
N. Borijindargoon and B. P. Ng, "Directional Adaptive MUSIC-Like Algorithm Under Symmetric α-Stable Distributed Noise," Progress In Electromagnetics Research Letters, Vol. 87, 29-37, 2019.
doi:10.2528/PIERL19062605
http://www.jpier.org/pierl/pier.php?paper=19062605

References:
1. Nikias, C. L. and M. Shao, Signal Processing with Alpha-stable Distributions and Applications, Wiley-Interscience, New York, N.Y., 1995.

2. Schmidt, R. O., "Multiple emitter location and signal parameter estimation," IEEE Trans. Antennas Propag., Vol. 34, No. 3, 276-280, Mar. 1986.
doi:10.1109/TAP.1986.1143830

3. Kaveh, M. and A. Barabell, "The statistical performance of the MUSIC and the Minimum-Norm algorithms in resolving plane waves in noise," IEEE Trans. Acoust., Speech, Signal Process., Vol. 34, No. 2, 331-341, Apr. 1986.
doi:10.1109/TASSP.1986.1164815

4. Patole, S. M., M. Torlak, D. Wang, and M. Ali, "Automotive radars: A review of signal processing techniques," IEEE Signal Process. Mag., Vol. 34, No. 2, 22-35, Mar. 2017.
doi:10.1109/MSP.2016.2628914

5. Wan, L., X. Kong, and F. Xia, "Joint range-doppler-angle estimation for intelligent tracking of moving aerial targets," IEEE Internet Things J., Vol. 5, No. 3, 1625-1636, Jun. 2018.
doi:10.1109/JIOT.2017.2787785

6. Kim, J. M., O. K. Lee, and J. C. Ye, "Compressive MUSIC: Revisiting the link between compressive sensing and array signal processing," IEEE Trans. Inf. Theory, Vol. 58, No. 1, 278-301, Jan. 2012.
doi:10.1109/TIT.2011.2171529

7. Davies, M. E. and Y. C. Eldar, "Rank awareness in joint sparse recovery," IEEE Trans. Inf. Theory, Vol. 58, No. 2, 1135-1146, Feb. 2012.
doi:10.1109/TIT.2011.2173722

8. Lee, K., Y. Bresler, and M. Junge, "Subspace methods for joint sparse recovery," IEEE Trans. Inf. Theory, Vol. 58, No. 6, 3613-3641, Jun. 2012.
doi:10.1109/TIT.2012.2189196

9. Lee, O., J. Kim, Y. Bresler, and J. C. Ye, "Diffuse optical tomography using generalized MUSIC algorithm," IEEE Int. Symp. Biomed. Imag., 1142-1145, Jun. 2011.

10. Scholz, B., "Towards virtual electrical breast biopsy: Space-frequency MUSIC for trans-admittance data," IEEE Trans. Med. Imag., Vol. 21, No. 6, 588-595, Jun. 2002.
doi:10.1109/TMI.2002.800609

11. Borijindargoon, N., B. P. Ng, and S. Rahardja, "MUSIC-like algorithm for source localization in electrical impedance tomography," IEEE Trans. Ind. Electron, Vol. 66, No. 6, 4661-4671, Jun. 2019.
doi:10.1109/TIE.2018.2863196

12. Adali, T. and S. S. Haykin, Adaptive Signal Processing: Next Generation Solutions, John Wiley & Sons, Hoboken, New Jersey, 2010.
doi:10.1002/9780470575758

13. Liu, T. H. and J. M. Mendel, "A subspace-based direction finding algorithm using fractional lower order statistics," IEEE Signal Process. Mag., Vol. 49, No. 8, 1605-1613, Aug. 2001.
doi:10.1109/78.934131

14. Tsakalides, P. and C. L. Nikias, "The robust covariation-based MUSIC (ROC-MUSIC) algorithm for bearing estimation in impulsive noise environments," IEEE Signal Process. Mag., Vol. 44, No. 7, 1623-1633, Jul. 1996.
doi:10.1109/78.510611

15. Visuri, S., H. Oja, and V. Koivunen, "Subspace-based direction-of-arrival estimation using nonparametric statistics," IEEE Signal Process. Mag., Vol. 49, No. 9, 2060-2073, Sept. 2001.
doi:10.1109/78.942634

16. Ying, Z. and B. P. Ng, "MUSIC-like DOA estimation without estimating the number of sources," IEEE Trans. Signal Process., Vol. 58, No. 3, 1668-1676, Mar. 2010.
doi:10.1109/TSP.2009.2037074

17. Reddy, V. V., B. P. Ng, and A. W. H. Khong, "Insights into MUSIC-like algorithm," IEEE Trans. Signal Process., Vol. 61, No. 10, 2551-2556, May 2013.
doi:10.1109/TSP.2013.2251337

18. Lim, H. S., B. P. Ng, and V. V. Reddy, "Generalized MUSIC-Like array processing for underwater environments," IEEE J. Ocean. Eng., Vol. 42, No. 1, 124-134, Jan. 2017.

19. Capon, J., "High-resolution frequency-wavenumber spectrum analysis," Proceedings of the IEEE, Vol. 57, No. 8, 1408-1418, Aug. 1969.
doi:10.1109/PROC.1969.7278


© Copyright 2010 EMW Publishing. All Rights Reserved