Vol. 89
Latest Volume
All Volumes
PIERL 119 [2024] PIERL 118 [2024] PIERL 117 [2024] PIERL 116 [2024] PIERL 115 [2024] PIERL 114 [2023] PIERL 113 [2023] PIERL 112 [2023] PIERL 111 [2023] PIERL 110 [2023] PIERL 109 [2023] PIERL 108 [2023] PIERL 107 [2022] PIERL 106 [2022] PIERL 105 [2022] PIERL 104 [2022] PIERL 103 [2022] PIERL 102 [2022] PIERL 101 [2021] PIERL 100 [2021] PIERL 99 [2021] PIERL 98 [2021] PIERL 97 [2021] PIERL 96 [2021] PIERL 95 [2021] PIERL 94 [2020] PIERL 93 [2020] PIERL 92 [2020] PIERL 91 [2020] PIERL 90 [2020] PIERL 89 [2020] PIERL 88 [2020] PIERL 87 [2019] PIERL 86 [2019] PIERL 85 [2019] PIERL 84 [2019] PIERL 83 [2019] PIERL 82 [2019] PIERL 81 [2019] PIERL 80 [2018] PIERL 79 [2018] PIERL 78 [2018] PIERL 77 [2018] PIERL 76 [2018] PIERL 75 [2018] PIERL 74 [2018] PIERL 73 [2018] PIERL 72 [2018] PIERL 71 [2017] PIERL 70 [2017] PIERL 69 [2017] PIERL 68 [2017] PIERL 67 [2017] PIERL 66 [2017] PIERL 65 [2017] PIERL 64 [2016] PIERL 63 [2016] PIERL 62 [2016] PIERL 61 [2016] PIERL 60 [2016] PIERL 59 [2016] PIERL 58 [2016] PIERL 57 [2015] PIERL 56 [2015] PIERL 55 [2015] PIERL 54 [2015] PIERL 53 [2015] PIERL 52 [2015] PIERL 51 [2015] PIERL 50 [2014] PIERL 49 [2014] PIERL 48 [2014] PIERL 47 [2014] PIERL 46 [2014] PIERL 45 [2014] PIERL 44 [2014] PIERL 43 [2013] PIERL 42 [2013] PIERL 41 [2013] PIERL 40 [2013] PIERL 39 [2013] PIERL 38 [2013] PIERL 37 [2013] PIERL 36 [2013] PIERL 35 [2012] PIERL 34 [2012] PIERL 33 [2012] PIERL 32 [2012] PIERL 31 [2012] PIERL 30 [2012] PIERL 29 [2012] PIERL 28 [2012] PIERL 27 [2011] PIERL 26 [2011] PIERL 25 [2011] PIERL 24 [2011] PIERL 23 [2011] PIERL 22 [2011] PIERL 21 [2011] PIERL 20 [2011] PIERL 19 [2010] PIERL 18 [2010] PIERL 17 [2010] PIERL 16 [2010] PIERL 15 [2010] PIERL 14 [2010] PIERL 13 [2010] PIERL 12 [2009] PIERL 11 [2009] PIERL 10 [2009] PIERL 9 [2009] PIERL 8 [2009] PIERL 7 [2009] PIERL 6 [2009] PIERL 5 [2008] PIERL 4 [2008] PIERL 3 [2008] PIERL 2 [2008] PIERL 1 [2008]
2020-01-14
A Subarray Design Method for Low Sidelobe Levels
By
Progress In Electromagnetics Research Letters, Vol. 89, 45-51, 2020
Abstract
Partitioning large arrays into subarrays can reduce system cost. In this paper, we use identical subarrays to partition a large rectangular aperture. The periodical structure in a large array is broken down by changing the orientations of the subarrays. In each subarray, the element positions are optimized by particle swarm optimization (PSO) to obtain low sidelobe levels. In order to reduce the coupling among the elements, the minimum element distance measured in Euclidean space is restricted in the procedure of optimization. And a modified PSO is proposed to solve the optimization problem with this constraint. Better results can be obtained than the element distance constraint measured in Chebyshev space. This simple but efficient subarray design method is demonstrated through several numerical simulations.
Citation
Kai Yang, Yuqiang Wang, and Hai Tang, "A Subarray Design Method for Low Sidelobe Levels," Progress In Electromagnetics Research Letters, Vol. 89, 45-51, 2020.
doi:10.2528/PIERL19110301
References

1. Mailloux, R. J., Phased Array Antenna Handbook, Artech House, Boston, MA, 2005.

2. Wang, H., D. G. Fang, and Y. L. Chow, "Grating lobe reduction in a phased array of limited scanning," IEEE Trans. Antennas Propag., Vol. 55, 1581-1586, Jun. 2008.
doi:10.1109/TAP.2008.923354

3. Gregory, M. D., F. A. Namin, and D. H. Werner, "Exploiting rotational symmetry for the design of ultra-wideband planar phased array layouts," IEEE Trans. Antennas Propag., Vol. 61, 176-184, Jan. 2013.
doi:10.1109/TAP.2012.2220107

4. Haupt, R. L., "Optimized weighting of uniform subarrays of unequal sizes," IEEE Trans. Antennas Propag., Vol. 53, 1207-1210, Apr. 2007.
doi:10.1109/TAP.2007.893406

5. Mailloux, R. J., S. G. Santarelli, and T. M. Roberts, "Wideband arrays using irregular (polyomino) shaped subarrays," Electronics Letters, Vol. 42, No. 18, 1019-1020, 2006.
doi:10.1049/el:20062252

6. Isernia, T., M. D’Urso, and O. Bucci, "A simple idea for an effective sub-arraying of large planar source," IEEE Antennas Wireless Propag. Lett., Vol. 8, 169-172, 2009.
doi:10.1109/LAWP.2008.2000943

7. Xiong, Z. Y., Z. H. Xu, S. W. Chen, and S. P. Xiao, "Subarray partition in array antenna based on the algorithm X," IEEE Antennas Wireless Propag. Lett., Vol. 12, 906-909, 2013.
doi:10.1109/LAWP.2013.2272793

8. Chen, K., X. Yun, Z. He, and C. Han, "Synthesis of sparse planar arrays using modified real genetic algorithm," IEEE Trans. Antennas Propag., Vol. 55, 1067-1073, Apr. 2007.
doi:10.1109/TAP.2007.893375

9. Su, T. and H. Ling, "Array beamforming in the presence of a mounting tower using genetic algorithm," IEEE Trans. Antennas Propag., Vol. 53, No. 6, 2011-2019, Jun. 2005.
doi:10.1109/TAP.2005.848449

10. Ferreira, J. A. and F. Ares, "Pattern synthesis of conformal arrays by the simulated annealing technique," Electron. Lett., Vol. 33, No. 14, 1187-1189, Jul. 1997.
doi:10.1049/el:19970838

11. Lee, K. C. and J. Y. Jhang, "Application of particle swarm algorithm to the optimization of unequally spaced antenna arrays," Journal of Electromagnetic Waves and Applications, Vol. 20, No. 14, 2001-2012, 2006.
doi:10.1163/156939306779322747

12. Liu, D., Q. Feng, W.-B. Wang, and X. Yu, "Synthesis of unequally spaced antenna arrays by using inheritance learning particle swarm optimization," Progress In Electromagnetics Research, Vol. 118, 205-221, 2011.
doi:10.2528/PIER11050502

13. Oliveri, G. and A. Massa, "GA-enhanced ADS-based approach for array thinning," IET Microw., Antennas Propag., Vol. 5, No. 3, 305-315, Feb. 2011.
doi:10.1049/iet-map.2010.0114

14. Liu, Y., P. You, C. Zhu, X. Tan, and Q. H. Liu, "Synthesis of sparse or thinned linear and planar arrays generating reconfigurable multiple real patterns by iterative linear programming," Progress In Electromagnetics Research, Vol. 155, 27-38, 2016.
doi:10.2528/PIER15120401

15. Abdelmadjid, R., "Optimization of antenna arrays using different strategies based on Taguchi method," Arabian Journal for Science and Engineering, Vol. 39, No. 2, 935-944, 2014.
doi:10.1007/s13369-013-0644-8

16. Abdelmadjid, R., "Application of the spiral optimization technique to antenna array design," Handbook of Research on Emergent Applications of Optimization Algorithms, IGI Global, 2018.

17. Abdelmadjid, R., "Design and thinning of linear and planar antenna arrays using a binary teaching learning optimizer," Acta Physic Polonica A, Vol. 130, No. 1, 7-8, 2016.
doi:10.12693/APhysPolA.130.7

18. Robinson, J. and Y. Rahmat-Samii, "Particle swarm optimization in electromagnetics," IEEE Trans. Antennas Propag., Vol. 52, No. 2, 397-407, Feb. 2004.
doi:10.1109/TAP.2004.823969