Vol. 97
Latest Volume
All Volumes
PIERL 119 [2024] PIERL 118 [2024] PIERL 117 [2024] PIERL 116 [2024] PIERL 115 [2024] PIERL 114 [2023] PIERL 113 [2023] PIERL 112 [2023] PIERL 111 [2023] PIERL 110 [2023] PIERL 109 [2023] PIERL 108 [2023] PIERL 107 [2022] PIERL 106 [2022] PIERL 105 [2022] PIERL 104 [2022] PIERL 103 [2022] PIERL 102 [2022] PIERL 101 [2021] PIERL 100 [2021] PIERL 99 [2021] PIERL 98 [2021] PIERL 97 [2021] PIERL 96 [2021] PIERL 95 [2021] PIERL 94 [2020] PIERL 93 [2020] PIERL 92 [2020] PIERL 91 [2020] PIERL 90 [2020] PIERL 89 [2020] PIERL 88 [2020] PIERL 87 [2019] PIERL 86 [2019] PIERL 85 [2019] PIERL 84 [2019] PIERL 83 [2019] PIERL 82 [2019] PIERL 81 [2019] PIERL 80 [2018] PIERL 79 [2018] PIERL 78 [2018] PIERL 77 [2018] PIERL 76 [2018] PIERL 75 [2018] PIERL 74 [2018] PIERL 73 [2018] PIERL 72 [2018] PIERL 71 [2017] PIERL 70 [2017] PIERL 69 [2017] PIERL 68 [2017] PIERL 67 [2017] PIERL 66 [2017] PIERL 65 [2017] PIERL 64 [2016] PIERL 63 [2016] PIERL 62 [2016] PIERL 61 [2016] PIERL 60 [2016] PIERL 59 [2016] PIERL 58 [2016] PIERL 57 [2015] PIERL 56 [2015] PIERL 55 [2015] PIERL 54 [2015] PIERL 53 [2015] PIERL 52 [2015] PIERL 51 [2015] PIERL 50 [2014] PIERL 49 [2014] PIERL 48 [2014] PIERL 47 [2014] PIERL 46 [2014] PIERL 45 [2014] PIERL 44 [2014] PIERL 43 [2013] PIERL 42 [2013] PIERL 41 [2013] PIERL 40 [2013] PIERL 39 [2013] PIERL 38 [2013] PIERL 37 [2013] PIERL 36 [2013] PIERL 35 [2012] PIERL 34 [2012] PIERL 33 [2012] PIERL 32 [2012] PIERL 31 [2012] PIERL 30 [2012] PIERL 29 [2012] PIERL 28 [2012] PIERL 27 [2011] PIERL 26 [2011] PIERL 25 [2011] PIERL 24 [2011] PIERL 23 [2011] PIERL 22 [2011] PIERL 21 [2011] PIERL 20 [2011] PIERL 19 [2010] PIERL 18 [2010] PIERL 17 [2010] PIERL 16 [2010] PIERL 15 [2010] PIERL 14 [2010] PIERL 13 [2010] PIERL 12 [2009] PIERL 11 [2009] PIERL 10 [2009] PIERL 9 [2009] PIERL 8 [2009] PIERL 7 [2009] PIERL 6 [2009] PIERL 5 [2008] PIERL 4 [2008] PIERL 3 [2008] PIERL 2 [2008] PIERL 1 [2008]
2021-03-01
Microstrip Crossover on FR-4 Substrate
By
Progress In Electromagnetics Research Letters, Vol. 97, 1-6, 2021
Abstract
This letter shows a compact planar microstrip crossover. The crossover design employs a microstrip to coplanar waveguide transition. The crossover is fabricated on a low cost and readily available FR-4 substrate, and simulation and measurement responses in the low frequency band have been shown. The number of GND vias forming a quasi-coaxial section that confined the electric field around the signal via was increased to improve impedance matching. The core size of the circuit is as compact as 20 mm × 10 mm even in the low frequency band. The crossover operates in the low frequency band with insertion loss of less than 1 dB, return loss of more than 10 dB, and isolation of more than 15 dB.
Citation
Takeru Inaba, and Hitoshi Hayashi, "Microstrip Crossover on FR-4 Substrate," Progress In Electromagnetics Research Letters, Vol. 97, 1-6, 2021.
doi:10.2528/PIERL21010605
References

1. Wu, S. C., H. Y. Yang, N. G. Alexopoulos, and I. Wolf, "A rigorous dispersive characterization of microstrip cross and T junctions," IEEE Trans. Microw. Theory Tech., Vol. 38, No. 12, 1837-1844, Dec. 1990.
doi:10.1109/22.64564

2. Horng, T.-S., "A rigorousstudy of microstrip crossovers and their possible improvements," IEEE Trans. Microw. Theory Tech., Vol. 42, No. 9, 1802-1806, Sep. 1994.
doi:10.1109/22.310591

3. Yao, J.-J., C. Lee, and S.-P. Yeo, "Microstrip branch-line couplers for crossover application," IEEE Trans. Microw. Theory Tech., Vol. 59, No. 1, 87-92, Jan. 2011.
doi:10.1109/TMTT.2010.2090695

4. Chiou, Y. C., J. T. Kuo, and H. R. Lee, "Design of compact symmetric four-port crossover junction," IEEE Microw. Wireless Compon. Lett. , Vol. 19, No. 9, 545-547, Sep. 2009.
doi:10.1109/LMWC.2009.2027054

5. Liu, W., Z. Zhang, Z. Feng, and M. Iskander, "A compact wideband microstrip crossover," IEEE Microw. Wireless Compon. Lett., Vol. 22, No. 5, 254-256, May 2012.
doi:10.1109/LMWC.2012.2190270

6. Abbosh, A., S. Ibrahim, and M. Karim, "Ultra-wideband crossover using microstrip-to-coplanar waveguide transitions," IEEE Microw. Wireless Compon. Lett., Vol. 22, No. 10, 500-502, Oct. 2012.
doi:10.1109/LMWC.2012.2218586

7. Tajik, A., M. Fakharzadeh, and K. Mehrany, "DC to 40-GHz compact single-layer crossover," IEEE Microw. Wireless Compon. Lett., Vol. 28, No. 8, 642-644, Aug. 2018.
doi:10.1109/LMWC.2018.2843134

8. Fakharzadeh, M. and S. Jafarlou, "A broadband low-loss 60 GHz die to rectangular waveguide transition," IEEE Microw. Wireless Compon. Lett., Vol. 25, No. 6, 370-372, Jun. 2015.
doi:10.1109/LMWC.2015.2421274