Vol. 98
Latest Volume
All Volumes
PIERL 119 [2024] PIERL 118 [2024] PIERL 117 [2024] PIERL 116 [2024] PIERL 115 [2024] PIERL 114 [2023] PIERL 113 [2023] PIERL 112 [2023] PIERL 111 [2023] PIERL 110 [2023] PIERL 109 [2023] PIERL 108 [2023] PIERL 107 [2022] PIERL 106 [2022] PIERL 105 [2022] PIERL 104 [2022] PIERL 103 [2022] PIERL 102 [2022] PIERL 101 [2021] PIERL 100 [2021] PIERL 99 [2021] PIERL 98 [2021] PIERL 97 [2021] PIERL 96 [2021] PIERL 95 [2021] PIERL 94 [2020] PIERL 93 [2020] PIERL 92 [2020] PIERL 91 [2020] PIERL 90 [2020] PIERL 89 [2020] PIERL 88 [2020] PIERL 87 [2019] PIERL 86 [2019] PIERL 85 [2019] PIERL 84 [2019] PIERL 83 [2019] PIERL 82 [2019] PIERL 81 [2019] PIERL 80 [2018] PIERL 79 [2018] PIERL 78 [2018] PIERL 77 [2018] PIERL 76 [2018] PIERL 75 [2018] PIERL 74 [2018] PIERL 73 [2018] PIERL 72 [2018] PIERL 71 [2017] PIERL 70 [2017] PIERL 69 [2017] PIERL 68 [2017] PIERL 67 [2017] PIERL 66 [2017] PIERL 65 [2017] PIERL 64 [2016] PIERL 63 [2016] PIERL 62 [2016] PIERL 61 [2016] PIERL 60 [2016] PIERL 59 [2016] PIERL 58 [2016] PIERL 57 [2015] PIERL 56 [2015] PIERL 55 [2015] PIERL 54 [2015] PIERL 53 [2015] PIERL 52 [2015] PIERL 51 [2015] PIERL 50 [2014] PIERL 49 [2014] PIERL 48 [2014] PIERL 47 [2014] PIERL 46 [2014] PIERL 45 [2014] PIERL 44 [2014] PIERL 43 [2013] PIERL 42 [2013] PIERL 41 [2013] PIERL 40 [2013] PIERL 39 [2013] PIERL 38 [2013] PIERL 37 [2013] PIERL 36 [2013] PIERL 35 [2012] PIERL 34 [2012] PIERL 33 [2012] PIERL 32 [2012] PIERL 31 [2012] PIERL 30 [2012] PIERL 29 [2012] PIERL 28 [2012] PIERL 27 [2011] PIERL 26 [2011] PIERL 25 [2011] PIERL 24 [2011] PIERL 23 [2011] PIERL 22 [2011] PIERL 21 [2011] PIERL 20 [2011] PIERL 19 [2010] PIERL 18 [2010] PIERL 17 [2010] PIERL 16 [2010] PIERL 15 [2010] PIERL 14 [2010] PIERL 13 [2010] PIERL 12 [2009] PIERL 11 [2009] PIERL 10 [2009] PIERL 9 [2009] PIERL 8 [2009] PIERL 7 [2009] PIERL 6 [2009] PIERL 5 [2008] PIERL 4 [2008] PIERL 3 [2008] PIERL 2 [2008] PIERL 1 [2008]
2021-05-17
Orbital Angular Momentum Orthogonality Based Crosstalk Reduction
By
Progress In Electromagnetics Research Letters, Vol. 98, 17-24, 2021
Abstract
We report a reduction in crosstalk between a transmitting antenna and an adjacent receiving antenna due to the use of radiation patterns with different orbital angular momentum (OAM). This crosstalk reduction is based on the orthogonality between different OAM modes. To generate OAM beams, patch array antennas are designed using High frequency simulation software (HFSS). The designed antennas are fabricated and characterized. An experiment is carried out to determine the amount of crosstalk reduction achieved due to the OAM nature of the signals transmitted. The variation of this crosstalk reduction with the distance between the transmitting and receiving antennas is also studied. The results obtained are verified through theoretical analysis using simulations in HFSS. A maximum theoretical crosstalk reduction of 3.6 dB has been obtained, and a crosstalk reduction of 2.6 dB has been realized experimentally. The results may benefit full-duplex communication links.
Citation
Unaiza Tariq, Hiva Shahoei, Guang Yang, and Duncan L. MacFarlane, "Orbital Angular Momentum Orthogonality Based Crosstalk Reduction," Progress In Electromagnetics Research Letters, Vol. 98, 17-24, 2021.
doi:10.2528/PIERL21022501
References

1. Allen, L., M. W. Beijersbergen, R. J. C. Spreeuw, and J. P. Woerdman, "Orbital angular momentum of light and the transformation of Laguerre-Gaussian laser modes," Phys. Rev. A, Vol. 45, No. 11, 8185-8189, Jun. 1992. Accessed on: Sep. 7, 2020.
doi:10.1103/PhysRevA.45.8185

2. Yao, A. M. and M. J. Padgett, "Orbital angular momentum: Origins, behavior and applications," Adv. Opt. Photonics, Vol. 3, No. 2, 161-204, May 2011. Accessed on: Sep. 7, 2020.
doi:10.1364/AOP.3.000161

3. Tamburini, F., E. Mari, A. Sponselli, B. Thide, A. Bianchini, and F. Romanato, "Encoding many channels on the same frequency through radio vorticity: First experimental test," New J. Phys., Vol. 14, No. 3, 3001-3018, Mar. 2012. Accessed on: Sep. 11, 2012.
doi:10.1088/1367-2630/14/3/033001

4. Tamburini, F., E. Mari, G. Parisi, F. Spinello, M. Oldoni, R. A. Ravanelli, P. Coassini, C. G. Someda, B. Thide, and F. Romana, "Tripling the capacity of a point-to-point radio link by using electromagnetic vortices," Radio Sci., Vol. 50, No. 6, 501-508, Jun. 2015. Accessed on: Sep. 7, 2020.
doi:10.1002/2015RS005662

5. Spinello, F., E. Mari, M. Oldoni, R. A. Ravanelli, C. G. Someda, F. Tamburini, F. Romanato, P. Coassini, and G. Parisi, "Experimental near field OAM-based communication with circular patch array," Optics, 1507.06889, Jul. 2015.

6. Ashrafi, S., "Full duplex using OAM,", Patent 20200044349, [Online]. Available: Justia: Patents: US Patent Application for FULL DUPLEX USING OAM Patent Application.

7. Zhang, Y. and J. Li, "Analyses and full-duplex applications of circularly polarized OAM arrays using sequentially rotated configuration," IEEE Transactions on Antennas and Propagation , Vol. 66, No. 12, 7010-7020, Dec. 2018.
doi:10.1109/TAP.2018.2872169

8. Choi, J. I., M. Jain, K. Srinivasan, P. Levis, and S. Katti, "Achieving single channel, full duplex wireless communication," International Conference on Mobile Computing and Networking, 2010,Online], available: https://web.stanford.edu/∼skatti/pubs/mobicom10-fd.pdf..

9. Chen, S., M. Beach, and J. McGeehan, "Division-free duplex for wireless applications," IEEE Electron. Lett., Vol. 34, No. 2, 147-148, Jan. 1998. Accessed on: Sept. 6, 2020.
doi:10.1049/el:19980022

10. Duarte, M., "Full-duplex wireless: Design, implementation and characterization,", PhD. Dissertation, Rice Univ., Houston, Tx, 2012.

11. Duarte, M., A. Sabharwal, V. Aggarwal, R. Janna, K. K. Ramakrishnan, C. W. Rice, and N. Shankaranarayanan, "Design and characterization of a full-duplex multiantenna system for WiFi networks," IEEE Trans. Veh. Technol., Vol. 63, No. 3, 1160-1177, Mar. 2012. Accessed on: Sep. 7, 2020.
doi:10.1109/TVT.2013.2284712

12. Jain, M., J. I. Choi, T. Kim, D. Bharadia, S. Seth, K. Srinivasan, P. Levis, S. Katti, and P. Sinha, "Practical, real-time, full duplex wireless," MobiCom, Las Vegas, Nevada, USA, Sep. 19–23, 2011.

13. Sahai, A., G. Patel, C. Dick, and A. Sabharwal, "On the impact of phase noise on active cancellation in wireless full-duplex," IEEE Trans. Veh. Technol., Vol. 62, No. 9, 4494-4510, Nov. 2013. Accessed on: Sep. 7, 2020.
doi:10.1109/TVT.2013.2266359

14. Trinder, J. R., "Parabolic reflector,", Patent WO 2005069443, Jul. 28, 2005.

15. Schemmel, P., G. Pisano, and B. Maffei, "Modular spiral phase plate design for orbital angular momentum generation at millimetre wavelengths," Opt. Express, Vol. 22, No. 12, 14712-14726, Jun. 2014. Accessed on: Sep. 8, 2020.
doi:10.1364/OE.22.014712

16. Gao, X., S. Huang, J. Zhou, Y. Wei, C. Gao, X. Zhang, and W. Gu, "Generating, multiplexing/demultiplexing and receiving the orbital angular momentum of radio frequency signals using an optical true time delay unit," J. Opt., Vol. 15, No. 10, 5401-5407, Aug. 2013. Accessed on: Sep. 8, 2020.

17. Mahmouli, F. E. and S. Walker, "Orbital angular momentum generation in a 60 GHz wireless radio channel,", 20th TELFOR, Nov. 2012, [Online]. Available: https://ieeexplore.ieee.org/document/6419210.

18. Bai, Q., A. Tennant, and B. Allen, "Experimental circular phased array for generating OAM radio beams," Electron. Lett. , Vol. 50, No. 20, 1414-1415, Sep. 2014. Accessed on: Sep. 8, 2020.
doi:10.1049/el.2014.2860