Vol. 98
Latest Volume
All Volumes
PIERL 119 [2024] PIERL 118 [2024] PIERL 117 [2024] PIERL 116 [2024] PIERL 115 [2024] PIERL 114 [2023] PIERL 113 [2023] PIERL 112 [2023] PIERL 111 [2023] PIERL 110 [2023] PIERL 109 [2023] PIERL 108 [2023] PIERL 107 [2022] PIERL 106 [2022] PIERL 105 [2022] PIERL 104 [2022] PIERL 103 [2022] PIERL 102 [2022] PIERL 101 [2021] PIERL 100 [2021] PIERL 99 [2021] PIERL 98 [2021] PIERL 97 [2021] PIERL 96 [2021] PIERL 95 [2021] PIERL 94 [2020] PIERL 93 [2020] PIERL 92 [2020] PIERL 91 [2020] PIERL 90 [2020] PIERL 89 [2020] PIERL 88 [2020] PIERL 87 [2019] PIERL 86 [2019] PIERL 85 [2019] PIERL 84 [2019] PIERL 83 [2019] PIERL 82 [2019] PIERL 81 [2019] PIERL 80 [2018] PIERL 79 [2018] PIERL 78 [2018] PIERL 77 [2018] PIERL 76 [2018] PIERL 75 [2018] PIERL 74 [2018] PIERL 73 [2018] PIERL 72 [2018] PIERL 71 [2017] PIERL 70 [2017] PIERL 69 [2017] PIERL 68 [2017] PIERL 67 [2017] PIERL 66 [2017] PIERL 65 [2017] PIERL 64 [2016] PIERL 63 [2016] PIERL 62 [2016] PIERL 61 [2016] PIERL 60 [2016] PIERL 59 [2016] PIERL 58 [2016] PIERL 57 [2015] PIERL 56 [2015] PIERL 55 [2015] PIERL 54 [2015] PIERL 53 [2015] PIERL 52 [2015] PIERL 51 [2015] PIERL 50 [2014] PIERL 49 [2014] PIERL 48 [2014] PIERL 47 [2014] PIERL 46 [2014] PIERL 45 [2014] PIERL 44 [2014] PIERL 43 [2013] PIERL 42 [2013] PIERL 41 [2013] PIERL 40 [2013] PIERL 39 [2013] PIERL 38 [2013] PIERL 37 [2013] PIERL 36 [2013] PIERL 35 [2012] PIERL 34 [2012] PIERL 33 [2012] PIERL 32 [2012] PIERL 31 [2012] PIERL 30 [2012] PIERL 29 [2012] PIERL 28 [2012] PIERL 27 [2011] PIERL 26 [2011] PIERL 25 [2011] PIERL 24 [2011] PIERL 23 [2011] PIERL 22 [2011] PIERL 21 [2011] PIERL 20 [2011] PIERL 19 [2010] PIERL 18 [2010] PIERL 17 [2010] PIERL 16 [2010] PIERL 15 [2010] PIERL 14 [2010] PIERL 13 [2010] PIERL 12 [2009] PIERL 11 [2009] PIERL 10 [2009] PIERL 9 [2009] PIERL 8 [2009] PIERL 7 [2009] PIERL 6 [2009] PIERL 5 [2008] PIERL 4 [2008] PIERL 3 [2008] PIERL 2 [2008] PIERL 1 [2008]
2021-06-15
Bandpass Filters Based SIW Square Cavity with Novel Feeding and Coupling Schemes
By
Progress In Electromagnetics Research Letters, Vol. 98, 61-68, 2021
Abstract
This paper presents two novel different feeding and coupling schemes to solve the problem of generating transmission zeros (TZ) in lower stopband and their applications to design single-band filters. The designed two filters are based on substrate integrated waveguide (SIW) square cavity with orthogonal ports. In the design of Filter A, two L-shaped stubs are introduced to form an addition coupling path between two ports, which cause the generation of one TZ. Other two TZs are formed due to the resonance characteristics of L-shaped stubs and ports offset. Two metal vias are used to adjust center frequency slightly. In the design of Filter B, other two stubs are designed to form two additional coupling paths, thus forming a total of three coupling paths with the original path. Two TZs are obtained by utilizing the phase difference between different paths, and one TZ is generated for the resonance characteristics of the proposed stub 3. Simultaneously, an L-shaped slot is used to adjust center frequency. Both designed filters use the coplanar waveguide (CPW) structure to control bandwidth. Two filters are set to operate at 14.4 GHz with bandwidth of 800 MHz. Both filters are fabricated and measured. The simulation results of two filters are in good agreement with the measured ones.
Citation
Bo Yin, Qianqian Huang, and Xiangyu Shi, "Bandpass Filters Based SIW Square Cavity with Novel Feeding and Coupling Schemes," Progress In Electromagnetics Research Letters, Vol. 98, 61-68, 2021.
doi:10.2528/PIERL21042901
References

1. Deslandes, D. and K. Wu, "Single-substrate integration technique of planar circuits and waveguide filters," IEEE Transactions on Microwave Theory and Techniques, Vol. 51, No. 2, 593-596, Feb. 2003.
doi:10.1109/TMTT.2002.807820

2. Liu, Y. J., G. Zhang, S. C. Liu, and J. Q. Yang, "Compact triple-band filter with adjustable passbands on one substrate integrated waveguide square resonant cavity," Microwave and Optical Technology Letters, Vol. 62, No. 12, 3709-3715, Jun. 2020.
doi:10.1002/mop.32491

3. Azad, A. R. and A. Mohan, "Compact bandpass filter with wide-stopband using substrate integrated waveguide cavities and short-circuited coplanar line," International Journal of Microwave and Wireless Technologies, Vol. 12, No. 5, 1-7, Jun. 2020.
doi:10.1017/S175907871900148X

4. Kim, P. and Y. Jeong, "Compact and wide stopband substrate integrated waveguide bandpass filter using mixed quarter- and one-eighth modes cavities," IEEE Microwave and Wireless Components Letters, Vol. 30, No. 1, 16-19, Jan. 2020.
doi:10.1109/LMWC.2019.2954603

5. Becharef, K., K. Nouri, H. Kandouci, B. S. Bouazza, M. Damou, and T. H. C. Bouazza, "Design and simulation of a broadband bandpass filter based on complementary split ring resonator circular “CSRRs”," Wireless Personal Communications, Vol. 111, No. 3, 1341-1354, Apr. 2020.
doi:10.1007/s11277-019-06918-6

6. Moitra, S., S. Nayak, R. Regar, S. Kumari, K. Kumari, F. Parween, and F. Naseem, "Circular complementary split ring resonators (CSRR) based SIW BPF," International Conference on Advanced Computational and Communication Paradigms, ICACCP, 1–5, 2019.

7. Moitra, S. and P. S. Bhowmik, "Analyses of combined DSRR and EBG structures over SIW and HMSIW for obtaining band pass response," Wireless Personal Communications, Vol. 111, No. 2, 1207-1218, Nov. 2019.
doi:10.1007/s11277-019-06909-7

8. Khalil, M., M. Kamarei, J. Jomaah, and , "Miniaturized half-mode slow-wave substrate-integrated waveguide bandpass filter," Wireless Personal Communications, Vol. 107, No. 1, 283-290, Jul. 2019.
doi:10.1007/s11277-019-06254-9

9. Azad, A. R. and A. Mohan, "Substrate integrated waveguide dual-band and wide-stopband bandpass filters," IEEE Microwave and Wireless Components Letters, Vol. 28, No. 8, 660-662, Aug. 2018.
doi:10.1109/LMWC.2018.2844103

10. Azad, A. R. and A. Mohan, "Single- and dual-band bandpass filters using a single perturbed SIW circular cavity," IEEE Microwave and Wireless Components Letters, Vol. 29, No. 3, 201-203, Mar. 2019.
doi:10.1109/LMWC.2019.2893379

11. Zhang, H., W. Kang, and W. Wu, "Miniaturized dual-band SIW filters using E-shaped slotlines with controllable center frequencies," IEEE Microwave and Wireless Components Letters, Vol. 28, No. 4, 311-313, Apr. 2018.
doi:10.1109/LMWC.2018.2811251

12. Zhang, H., W. Kang, and W. Wu, "Dual-band substrate integrated waveguide bandpass filter utilising complementary split-ring resonators," Electronic Letters, Vol. 54, No. 2, 85-87, Jan. 2018.
doi:10.1049/el.2017.3478

13. Dong, Y., W. Hong, H. Tang, and W. Ke, "Millimeter-wave dual-mode filter using circular high-order mode cavities," Microwave and Optical Technology Letters, Vol. 51, No. 7, 1743-1745, Jul. 2009.
doi:10.1002/mop.24456

14. Chen, F., K. Song, B. Hu, and Y. Fan, "Compact dual-band bandpass filter using HMSIW resonator and slot perturbation," IEEE Microwave and Wireless Components Letters, Vol. 24, No. 10, 686-688, Oct. 2014.
doi:10.1109/LMWC.2014.2342883

15. Rebenaque, D., F. Pereira, J. Garcia, A. Melcon, and M. Guglielmi, "Two compact configurations for implementing transmission zeros in microstrip filters," IEEE Microwave and Wireless Components Letters, Vol. 14, No. 10, 475-477, Oct. 2004.
doi:10.1109/LMWC.2004.834564

16. Mandal, M., K. Divyabramham, and V. Velidi, "Compact wideband bandstop filter with five transmission zeros," IEEE Microwave and Wireless Components Letters, Vol. 22, No. 1, 4-6, Jan. 2012.
doi:10.1109/LMWC.2011.2173928

17. Xu, K.-D., D. Li, and Y. Liu, "High-selectivity wideband bandpass filter using simple coupled lines with multiple transmission poles and zeros," IEEE Microwave and Wireless Components Letters, Vol. 29, No. 2, 107-109, Feb. 2019.
doi:10.1109/LMWC.2019.2891203

18. Lee, B., T.-H. Lee, K. Lee, M.-S. Uhm, and J. Lee, "K-band substrate-integrated waveguide resonator filter with suppressed higher-order mode," IEEE Microwave and Wireless Components Letters, Vol. 25, No. 6, 367-369, Jun. 2015.
doi:10.1109/LMWC.2015.2421313