Vol. 108
Latest Volume
All Volumes
PIERL 119 [2024] PIERL 118 [2024] PIERL 117 [2024] PIERL 116 [2024] PIERL 115 [2024] PIERL 114 [2023] PIERL 113 [2023] PIERL 112 [2023] PIERL 111 [2023] PIERL 110 [2023] PIERL 109 [2023] PIERL 108 [2023] PIERL 107 [2022] PIERL 106 [2022] PIERL 105 [2022] PIERL 104 [2022] PIERL 103 [2022] PIERL 102 [2022] PIERL 101 [2021] PIERL 100 [2021] PIERL 99 [2021] PIERL 98 [2021] PIERL 97 [2021] PIERL 96 [2021] PIERL 95 [2021] PIERL 94 [2020] PIERL 93 [2020] PIERL 92 [2020] PIERL 91 [2020] PIERL 90 [2020] PIERL 89 [2020] PIERL 88 [2020] PIERL 87 [2019] PIERL 86 [2019] PIERL 85 [2019] PIERL 84 [2019] PIERL 83 [2019] PIERL 82 [2019] PIERL 81 [2019] PIERL 80 [2018] PIERL 79 [2018] PIERL 78 [2018] PIERL 77 [2018] PIERL 76 [2018] PIERL 75 [2018] PIERL 74 [2018] PIERL 73 [2018] PIERL 72 [2018] PIERL 71 [2017] PIERL 70 [2017] PIERL 69 [2017] PIERL 68 [2017] PIERL 67 [2017] PIERL 66 [2017] PIERL 65 [2017] PIERL 64 [2016] PIERL 63 [2016] PIERL 62 [2016] PIERL 61 [2016] PIERL 60 [2016] PIERL 59 [2016] PIERL 58 [2016] PIERL 57 [2015] PIERL 56 [2015] PIERL 55 [2015] PIERL 54 [2015] PIERL 53 [2015] PIERL 52 [2015] PIERL 51 [2015] PIERL 50 [2014] PIERL 49 [2014] PIERL 48 [2014] PIERL 47 [2014] PIERL 46 [2014] PIERL 45 [2014] PIERL 44 [2014] PIERL 43 [2013] PIERL 42 [2013] PIERL 41 [2013] PIERL 40 [2013] PIERL 39 [2013] PIERL 38 [2013] PIERL 37 [2013] PIERL 36 [2013] PIERL 35 [2012] PIERL 34 [2012] PIERL 33 [2012] PIERL 32 [2012] PIERL 31 [2012] PIERL 30 [2012] PIERL 29 [2012] PIERL 28 [2012] PIERL 27 [2011] PIERL 26 [2011] PIERL 25 [2011] PIERL 24 [2011] PIERL 23 [2011] PIERL 22 [2011] PIERL 21 [2011] PIERL 20 [2011] PIERL 19 [2010] PIERL 18 [2010] PIERL 17 [2010] PIERL 16 [2010] PIERL 15 [2010] PIERL 14 [2010] PIERL 13 [2010] PIERL 12 [2009] PIERL 11 [2009] PIERL 10 [2009] PIERL 9 [2009] PIERL 8 [2009] PIERL 7 [2009] PIERL 6 [2009] PIERL 5 [2008] PIERL 4 [2008] PIERL 3 [2008] PIERL 2 [2008] PIERL 1 [2008]
2022-12-22
Landslide Area Identification and Detection Method Based on Micro-Variation Monitoring Radar Images
By
Progress In Electromagnetics Research Letters, Vol. 108, 65-73, 2023
Abstract
Micro-variation monitoring radar based on the differential interference principle can monitor objects prone to micro deformation. However, it is easily affected by human and environmental factors to cause the radar image to loss coherence in the long-term monitoring work, thus affecting the normal monitoring of radar. Therefore, it is of great significance to study the change detection method of micro-variation monitoring radar images, which can provide reference information and quantitative analysis for monitoring work. In this paper, a method of landslide area identification and detection based on micro-variation radar image is proposed. Based on the radar coherence coefficient image of time series, the difference image is produced by logarithmic ratio cumulation. The difference map is decomposed and denoised by wavelet transform, and then the final difference map is produced by reconstructing the processed wavelet coefficients. Finally, the improved K-means is used to cluster the difference map to get the change detection result image. The actual monitoring data of a mining area is used for variation detection. The results show that the proposed method retains the detailed information of the change area and removes a lot of noise. The difference map is easier to cluster, and the clustering result is more accurate.
Citation
Shaoshuai Zhang, Yaolong Qi, Pingping Huang, Weixian Tan, and Yuejuan Chen, "Landslide Area Identification and Detection Method Based on Micro-Variation Monitoring Radar Images," Progress In Electromagnetics Research Letters, Vol. 108, 65-73, 2023.
doi:10.2528/PIERL22101110
References

1. Wang, Y., L. Du, and H. Dai, "Unsupervised SAR image change detection based on SIFT keypoints and region information," IEEE Geoscience and Remote Sensing Letters, Vol. 13, No. 7, 931-935, July 2016.
doi:10.1109/LGRS.2016.2554606

2. Ren, H., P. Huang, W. Tan, W. Xu, F. Liu, and M. Zhang, "Unsupervised image change detection based on ground-based imaging radar," 2019 IEEE International Conference on Signal, Information and Data Processing (ICSIDP), 1-5, 2019.

3. Zhuang, H. Fan, H. Deng, K. Yao, and B. Guo, "A spatial-temporal adaptive neighborhood-based ratio approach for change detection in SAR images," Remote Sensing, Vol. 10, No. 8, 2018.
doi:10.3390/rs10081295

4. Zhang, X., W. Liu, and S. He, "Urban change detection in TerraSAR image using the difference method and sar coherence coefficient," Journal of Engineering Science And Technology Review, Vol. 11, No. 3, 18-23, 2018.
doi:10.25103/jestr.113.03

5. Bovolo, F. and L. Bruzzone, "A detail-preserving scale-driven approach to change detection in multitemporal SAR images," IEEE Transactions on Geoscience and Remote Sensing, Vol. 43, No. 12, 2963-2972, Dec. 2005.
doi:10.1109/TGRS.2005.857987

6. Sumaiya, M., N. Kumari, R. Shantha, and Selva, "Logarithmic mean-based thresholding for SAR image change detection," IEEE Geoscience and Remote Sensing Letters, Vol. 13, No. 11, 1726-1728, 2016.
doi:10.1109/LGRS.2016.2606119

7. Arai and Kohei, "Change detection method with multi-temporal satellite images based on wavelet decomposition and tiling," International Journal of Modern Physics A, Vol. 12, No. 3, 56-61, 2021.

8. Zhou, Y., L. Zhang, and P. Hua, "Combined simulated annealing and soft-threshold wavelet denoising of SAR image," Journal of Beijing University of Aeronautics and Astronautics, Vol. 32, No. 3, 293-296, 2006.

9. Yetgin, Z., "Unsupervised change detection of satellite images using local gradual descent," IEEE Transactions on Geoscience and Remote Sensing, Vol. 50, No. 5, 1919-1929, May 2012.
doi:10.1109/TGRS.2011.2168230

10. Liu, L., Z. Jia, J. Yang, and N. K. Kasabov, "SAR image change detection based on mathematical morphology and the K-means clustering algorithm," IEEE Access, Vol. 7, 43970-43978, 2019.
doi:10.1109/ACCESS.2019.2908282