Vol. 110
Latest Volume
All Volumes
PIERL 119 [2024] PIERL 118 [2024] PIERL 117 [2024] PIERL 116 [2024] PIERL 115 [2024] PIERL 114 [2023] PIERL 113 [2023] PIERL 112 [2023] PIERL 111 [2023] PIERL 110 [2023] PIERL 109 [2023] PIERL 108 [2023] PIERL 107 [2022] PIERL 106 [2022] PIERL 105 [2022] PIERL 104 [2022] PIERL 103 [2022] PIERL 102 [2022] PIERL 101 [2021] PIERL 100 [2021] PIERL 99 [2021] PIERL 98 [2021] PIERL 97 [2021] PIERL 96 [2021] PIERL 95 [2021] PIERL 94 [2020] PIERL 93 [2020] PIERL 92 [2020] PIERL 91 [2020] PIERL 90 [2020] PIERL 89 [2020] PIERL 88 [2020] PIERL 87 [2019] PIERL 86 [2019] PIERL 85 [2019] PIERL 84 [2019] PIERL 83 [2019] PIERL 82 [2019] PIERL 81 [2019] PIERL 80 [2018] PIERL 79 [2018] PIERL 78 [2018] PIERL 77 [2018] PIERL 76 [2018] PIERL 75 [2018] PIERL 74 [2018] PIERL 73 [2018] PIERL 72 [2018] PIERL 71 [2017] PIERL 70 [2017] PIERL 69 [2017] PIERL 68 [2017] PIERL 67 [2017] PIERL 66 [2017] PIERL 65 [2017] PIERL 64 [2016] PIERL 63 [2016] PIERL 62 [2016] PIERL 61 [2016] PIERL 60 [2016] PIERL 59 [2016] PIERL 58 [2016] PIERL 57 [2015] PIERL 56 [2015] PIERL 55 [2015] PIERL 54 [2015] PIERL 53 [2015] PIERL 52 [2015] PIERL 51 [2015] PIERL 50 [2014] PIERL 49 [2014] PIERL 48 [2014] PIERL 47 [2014] PIERL 46 [2014] PIERL 45 [2014] PIERL 44 [2014] PIERL 43 [2013] PIERL 42 [2013] PIERL 41 [2013] PIERL 40 [2013] PIERL 39 [2013] PIERL 38 [2013] PIERL 37 [2013] PIERL 36 [2013] PIERL 35 [2012] PIERL 34 [2012] PIERL 33 [2012] PIERL 32 [2012] PIERL 31 [2012] PIERL 30 [2012] PIERL 29 [2012] PIERL 28 [2012] PIERL 27 [2011] PIERL 26 [2011] PIERL 25 [2011] PIERL 24 [2011] PIERL 23 [2011] PIERL 22 [2011] PIERL 21 [2011] PIERL 20 [2011] PIERL 19 [2010] PIERL 18 [2010] PIERL 17 [2010] PIERL 16 [2010] PIERL 15 [2010] PIERL 14 [2010] PIERL 13 [2010] PIERL 12 [2009] PIERL 11 [2009] PIERL 10 [2009] PIERL 9 [2009] PIERL 8 [2009] PIERL 7 [2009] PIERL 6 [2009] PIERL 5 [2008] PIERL 4 [2008] PIERL 3 [2008] PIERL 2 [2008] PIERL 1 [2008]
2023-05-11
Ultracompact Mode-Division (De)Multiplexer Based on Tilted Lithium Niobate Waveguide
By
Progress In Electromagnetics Research Letters, Vol. 110, 101-108, 2023
Abstract
We present an ultra-compact modular division (de) multiplexer [(de) MUX] based on the tilted lithium niobate waveguide, an asymmetric directional coupler (ADC) composed of silica-lithium niobate waveguide (SLNW) and lithium niobate waveguide (LNW) for the modular division multiplexer. The TE0 and TE1 modes were optimized by using the finite element method (FEM). By rationally designing the size of SLNW waveguide and LNW waveguide, TE0 mode light is injected into the In1 port of LNW waveguide, TE0 mode light is converted to TE1 mode in the coupling zone, and transmitted in the SLNW waveguide, output from the Out2 port. It show that the coupling length of this MUX is only 6 μm. At a working wavelength of 1.55 um, when TE0 enters the coupling area from port In1, the mode is coupled and converted to TE1; the TE1 mode is output from Out2; the value of IL is 0.87 dB; and the value of MCE is 99.5%. When TE0 enters from port In2, the TE0 mode is output from Out2, with 0.1 dB for IL, 99.7% for MCE, and -25 dB for CT.
Citation
Hua Liu, Fang Wang, Tao Ma, Shoudao Ma, and Yufang Liu, "Ultracompact Mode-Division (De)Multiplexer Based on Tilted Lithium Niobate Waveguide," Progress In Electromagnetics Research Letters, Vol. 110, 101-108, 2023.
doi:10.2528/PIERL23021403
References

1. Shacham, A., K. Bergman, and L. P. Carloni, "Photonic networks-on-chip for future generations of chip multiprocessors," IEEE Transactions on Computers, Vol. 57, No. 9, 1246-1260, 2008.
doi:10.1109/TC.2008.78

2. Miller, D., "Device requirements for optical interconnects to silicon chips," Proceedings of the IEEE, Vol. 97, No. 7, 1166-1185, 2009.
doi:10.1109/JPROC.2009.2014298

3. Dai, D., C. Li, S. Wang, et al. "10-channel mode (de)multiplexer with dual polarizations," Laser & Photonics Reviews, Vol. 12, No. 1, 2017.

4. Wang, S., X. Feng, S. Guo, et al. "On-chip reconfigurable optical add-drop multiplexer for hybrid wavelength/mode-division-multiplexing systems," Opt. Lett., Vol. 42, No. 14, 2802-2805, Jul. 15, 2017.
doi:10.1364/OL.42.002802

5. Dai, D., J. Wang, and Y. Shi, "Silicon mode (de)multiplexer enabling high capacity photonic networks-on-chip with a single-wavelength-carrier light," Opt. Lett., Vol. 38, No. 9, 1422-1424, May 1, 2013.
doi:10.1364/OL.38.001422

6. Ding, Y., J. Xu, F. Da Ros, B. Huang, H. Ou, and C. Peucheret, "On-chip two-mode division multiplexing using tapered directional coupler-based mode multiplexer and demultiplexer," Opt. Express, Vol. 21, No. 8, 10376-10382, Apr. 22, 2013.
doi:10.1364/OE.21.010376

7. Guo, F., D. Liu, R. Zhang, et al. "An MMI-based mode (DE)MUX by varying the waveguide thickness of the phase shifter," IEEE Photonics Technology Letters, Vol. 28, No. 21, 2443-2446, 2016.
doi:10.1109/LPT.2016.2599934

8. Sun, C., Y. Yu, M. Ye, G. Chen, and X. Zhang, "An ultra-low crosstalk and broadband two-mode (de)multiplexer based on adiabatic couplers," Sci. Rep., Vol. 6, 38494, Dec. 6, 2016.

9. Wu, Y. and K. S. Chiang, "Ultra-broadband mode multiplexers based on three-dimensional asymmetric waveguide branches," Opt. Lett., Vol. 42, No. 3, 407-410, Feb. 1, 2017.
doi:10.1364/OL.42.000407

10. Yang, Y. D., Y. Li, Y. Z. Huang, and A. W. Poon, "Silicon nitride three-mode division multiplexing and wavelength-division multiplexing using asymmetrical directional couplers and microring resonators," Opt. Express, Vol. 22, No. 18, 22172-22183, Sep. 8, 2014.
doi:10.1364/OE.22.022172

11. Xing, J., Z. Li, X. Xiao, J. Yu, and Y. Yu, "Two-mode multiplexer and demultiplexer based on adiabatic couplers," Opt. Lett., Vol. 38, No. 17, 3468-3470, Sep. 1, 2013.
doi:10.1364/OL.38.003468

12. Uematsu, T., Y. Ishizaka, Y. Kawaguchi, K. Saitoh, and M. Koshiba, "Design of a compact two-mode multi/demultiplexer consisting of multimode interference waveguides and a wavelength-insensitive phase shifter for mode-division multiplexing transmission," Journal of Lightwave Technology, Vol. 30, No. 15, 2421-2426, 2012.
doi:10.1109/JLT.2012.2199961

13. Chen, W., P. Wang, T. Yang, et al. "Silicon three-mode (de)multiplexer based on cascaded asymmetric Y junctions," Opt. Lett., Vol. 41, No. 12, 2851-2854, Jun. 15, 2016.
doi:10.1364/OL.41.002851

14. Sun, Y., Y. Xiong, and W. N. Ye, "Experimental demonstration of a two-mode (de)multiplexer based on a taper-etched directional coupler," Opt. Lett., Vol. 41, No. 16, 3743-3746, Aug. 15, 2016.
doi:10.1364/OL.41.003743

15. Hu, H., R. Ricken, and W. Sohler, "Lithium niobate photonic wires," Opt. Express, Vol. 17, 24261-24268, 2009.
doi:10.1364/OE.17.024261

16. Cheng, Z., J. Wang, Y. Huang, X. Ren, "Realization of a compact broadband polarization beam splitter using the three-waveguide coupler," IEEE Photonics Technology Letters, Vol. 31, No. 3, 2019.