Vol. 80
Latest Volume
All Volumes
PIERM 127 [2024] PIERM 126 [2024] PIERM 125 [2024] PIERM 124 [2024] PIERM 123 [2024] PIERM 122 [2023] PIERM 121 [2023] PIERM 120 [2023] PIERM 119 [2023] PIERM 118 [2023] PIERM 117 [2023] PIERM 116 [2023] PIERM 115 [2023] PIERM 114 [2022] PIERM 113 [2022] PIERM 112 [2022] PIERM 111 [2022] PIERM 110 [2022] PIERM 109 [2022] PIERM 108 [2022] PIERM 107 [2022] PIERM 106 [2021] PIERM 105 [2021] PIERM 104 [2021] PIERM 103 [2021] PIERM 102 [2021] PIERM 101 [2021] PIERM 100 [2021] PIERM 99 [2021] PIERM 98 [2020] PIERM 97 [2020] PIERM 96 [2020] PIERM 95 [2020] PIERM 94 [2020] PIERM 93 [2020] PIERM 92 [2020] PIERM 91 [2020] PIERM 90 [2020] PIERM 89 [2020] PIERM 88 [2020] PIERM 87 [2019] PIERM 86 [2019] PIERM 85 [2019] PIERM 84 [2019] PIERM 83 [2019] PIERM 82 [2019] PIERM 81 [2019] PIERM 80 [2019] PIERM 79 [2019] PIERM 78 [2019] PIERM 77 [2019] PIERM 76 [2018] PIERM 75 [2018] PIERM 74 [2018] PIERM 73 [2018] PIERM 72 [2018] PIERM 71 [2018] PIERM 70 [2018] PIERM 69 [2018] PIERM 68 [2018] PIERM 67 [2018] PIERM 66 [2018] PIERM 65 [2018] PIERM 64 [2018] PIERM 63 [2018] PIERM 62 [2017] PIERM 61 [2017] PIERM 60 [2017] PIERM 59 [2017] PIERM 58 [2017] PIERM 57 [2017] PIERM 56 [2017] PIERM 55 [2017] PIERM 54 [2017] PIERM 53 [2017] PIERM 52 [2016] PIERM 51 [2016] PIERM 50 [2016] PIERM 49 [2016] PIERM 48 [2016] PIERM 47 [2016] PIERM 46 [2016] PIERM 45 [2016] PIERM 44 [2015] PIERM 43 [2015] PIERM 42 [2015] PIERM 41 [2015] PIERM 40 [2014] PIERM 39 [2014] PIERM 38 [2014] PIERM 37 [2014] PIERM 36 [2014] PIERM 35 [2014] PIERM 34 [2014] PIERM 33 [2013] PIERM 32 [2013] PIERM 31 [2013] PIERM 30 [2013] PIERM 29 [2013] PIERM 28 [2013] PIERM 27 [2012] PIERM 26 [2012] PIERM 25 [2012] PIERM 24 [2012] PIERM 23 [2012] PIERM 22 [2012] PIERM 21 [2011] PIERM 20 [2011] PIERM 19 [2011] PIERM 18 [2011] PIERM 17 [2011] PIERM 16 [2011] PIERM 14 [2010] PIERM 13 [2010] PIERM 12 [2010] PIERM 11 [2010] PIERM 10 [2009] PIERM 9 [2009] PIERM 8 [2009] PIERM 7 [2009] PIERM 6 [2009] PIERM 5 [2008] PIERM 4 [2008] PIERM 3 [2008] PIERM 2 [2008] PIERM 1 [2008]
2019-04-09
Generation of Ultra-Wideband Multi-Mode Vortex Waves Based on Monolayer Reflective Metasurface
By
Progress In Electromagnetics Research M, Vol. 80, 111-120, 2019
Abstract
In this paper, a monolayer metasurface that can simultaneously generate multi-mode vortex waves in ultra-wideband is proposed. Smooth phase variation is obtained by properly assigning the arm lengths of arrow-shaped metal on the top of the reflective metasurface unit cell. Different reflective cells are arranged in different sectors to form a phase-shifted surface that can convert a linearly polarized plane wave into a vortex wave. The full-wave simulations show that the designed reflective metasurface can generate vortex wave with multi-mode in ultra-wideband from 18 GHz to 42 GHz, which is in good agreement with the theoretical analysis. The proposed reflective metasurface paves an effective approach to generate vortex wave with multi-mode in ultra-wideband for OAM-based systems. Compared to the traditional ways of generating vortex waves, our design has the advantage of wide bandwidth.
Citation
Xiaohang Dong, Hengyi Sun, Chang Qing Gu, Zhuo Li, Xinlei Chen, and Baijie Xu, "Generation of Ultra-Wideband Multi-Mode Vortex Waves Based on Monolayer Reflective Metasurface," Progress In Electromagnetics Research M, Vol. 80, 111-120, 2019.
doi:10.2528/PIERM19010504
References

1. Beth, R. A., "Mechanical detection and measurement of the angular momentum of light," Physical Review, Vol. 50, No. 2, 115-125, 1936.

2. Wang, J., J. Y. Yang, I. M. Fazal, N. Ahmed, Y. Yan, H. Huang, et al. "Terabit free-space data transmission employing orbital angular momentum multiplexing," Nature Photonics, Vol. 6, No. 7, 488-496, 2012.

3. Liu, K., Y. Cheng, Y. Gao, X. Li, Y. Qin, and H. Wang, "Super-resolution radar imaging based on experimental OAM beams," Applied Physics Letters, Vol. 110, No. 16, 164102, 2017.

4. Allen, L., M. W. Beijersbergen, R. J. Spreeuw, and J. P. Woerdman, "Orbital angular momentum of light and the transformation of Laguerre-Gaussian laser modes," Physical Review & Atomic Molecular & Optical Physics, Vol. 45, No. 11, 81-85, 1992.

5. Gibson, G., et al. "Free-space information transfer using light beams carrying orbital angular momentum," Optics Express, Vol. 12, No. 22, 5448-5456, 2004.

6. Grier, G. and M. D. Grier, "A revolution in optical manipulation," Nature, Vol. 424, No. 6950, 810-816, 2003.

7. Anzolin, G., F. Tamburini, A. Bianchini, G. Umbriaco, and C. Barbieri, "Optical vortices with starlight," Astronomy & Astrophysics, Vol. 488, No. 3, 1159-1165, 2008.

8. Berkhout, G. C. G. and M. W. Beijersbergen, "Method for probing the orbital angular momentum of optical vortices in electromagnetic waves from astronomical objects," Physical Review Letters, Vol. 101, No. 10, 100801, 2008.

9. Guan, B., C. Qin, R. P. Scott, N. K. Fontaine, T. Su, R. Proietti, et al. "Polarization diversified integrated circuits for orbital angular momentum multiplexing," IEEE Photonics Technology Letters, Vol. 27, No. 10, 1056-1059, 2015.

10. Thidé, B., et al. "Utilization of photon orbital angular momentum in the low-frequency radio domain," Physical Review Letters, Vol. 99, No. 8, 087701, 2007.

11. Mohammadi, S. M., et al. "Orbital angular momentum in radio - A system study," IEEE Transactions on Antennas & Propagation, Vol. 58, No. 2, 565-572, 2010.

12. Tamburini, F., et al. "Experimental demonstration of free-space information transfer using phase modulated orbital angular momentum radio," Physics, Vol. 13, No. 2, 20-25, 2013.

13. Brousseau, C., K. Mahdjoubi, O. Emile, and W. Wei, "Generation of OAM waves with circular phase shifter and array of patch antennas," Electronics Letters, Vol. 51, No. 6, 442-443, 2015.

14. Gaffoglio, R., A. Cagliero, A. D. Vita, and B. Sacco, "OAM multiple transmission using uniform circular arrays: Numerical modeling and experimental verification with two digital television signals," Radio Science, Vol. 51, No. 6, 645-658, 2016.

15. Bai, Q., A. Tennant, B. Allen, and M. U. Rehman, "Generation of Orbital Angular Momentum (OAM) radio beams with phased patch array," Antennas & Propagation Conference, Vol. 9, No. 6, 410-413, 2014.

16. Tamburini, F., et al. "Encoding many channels in the same frequency through radio vorticity: First experimental test," New Journal of Physics, Vol. 14, No. 3, 811-815, 2011.

17. Zhang, Z., S. Zheng, X. Jin, H., Chi, and X. Zhang, "Generation of plane spiral OAM waves using traveling-wave circular slot antenna," IEEE Antennas & Wireless Propagation Letters, Vol. 16, 8-11, 2016.

18. Zhang, W., S. Zheng, X. Hui, Y. Chen, X. Jin, H. Chi, et al. "Four-OAM-mode antenna with traveling-wave ring-slot structure," IEEE Antennas & Wireless Propagation Letters, Vol. 16, 521-524, 2017.

19. Barbuto, M., F. Trotta, F. Bilotti, and A. Toscano, "Circular polarized patch antenna generating orbital angular momentum," Progress In Electromagnetics Research, Vol. 148, 23-30, 2014.

20. Liang, J. and S. Zhang, "Orbital Angular Momentum (OAM) generation by cylinder dielectric resonator antenna for future wireless communications," IEEE Access, Vol. 4, 9570-9574, 2016.

21. Mao, F., M. Huang, T. Li, J. Zhang, and C. Yang, "Broadband generation of orbital angular momentum carrying beams in RF regimes," Progress In Electromagnetics Research, Vol. 160, 19-27, 2017.

22. Yu, S., L. Li, G. Shi, C. Zhu, X. Zhou, and Y. Shi, "Design, fabrication, and measurement of reflective metasurface for orbital angular momentum vortex wave in radio frequency domain," Applied Physics Letters, Vol. 108, No. 12, 5448, 2016.

23. Yu, S., G. Shi, C. Zhu, and Y. Shi, "Generating multiple orbital angular momentum vortex waves using a metasurface in radio frequency domain," Appl. Phys. Lett., Vol. 108, No. 24, 241901, 2016.

24. Jin, J., et al. "Generation and detection of orbital angular momentum via metasurface," Scientific Reports, Vol. 6, 24286, 2016.

25. Chen, M. L. N., L. J. Jiang, and W. E. I. Sha, "Artificial perfect electric conductor-perfect magnetic conductor anisotropic metasurface for generating orbital angular momentum of microwave with nearly perfect conversion efficiency," Journal of Applied Physics, Vol. 119, No. 6, 064506, 2016.

26. Chen, M. L. N., L. J. Jiang, and W. E. I. Sha, "Ultrathin complementary metasurface for orbital angular momentum generation at microwave frequencies," IEEE Transactions on Antennas & Propagation, Vol. 65, No. 1, 396-400, 2017.

27. Chen, M., L. J. Jiang, and W. E. I. Sha, "Detection of orbital angular momentum with metasurface at microwave band," IEEE Antennas & Wireless Propagation Letters, Vol. 17, No. 1, 110-113, 2018.

28. Xu, H. X., H. Liu, X. Ling, Y. Sun, and F. Yuan, "Broadband vortex wave generation using multimode pancharatnam-berry metasurface," IEEE Transactions on Antennas & Propagation, Vol. 65, No. 12, 7378-7382, 2017.

29. Zhang, Y., L. Yang, H. Wang, X. Zhang, and X. Jin, "Transforming surface wave to propagating OAM vortex wave via flat dispersive metasurface in radio frequency," IEEE Antennas & Wireless Propagation Letters, Vol. 17, No. 1, 172-175, 2018.

30. Yu, N., et al. "Light propagation with phase discontinuities reflection and refraction," Science, Vol. 334, 333-337, 2011.