Vol. 110
Latest Volume
All Volumes
PIERM 127 [2024] PIERM 126 [2024] PIERM 125 [2024] PIERM 124 [2024] PIERM 123 [2024] PIERM 122 [2023] PIERM 121 [2023] PIERM 120 [2023] PIERM 119 [2023] PIERM 118 [2023] PIERM 117 [2023] PIERM 116 [2023] PIERM 115 [2023] PIERM 114 [2022] PIERM 113 [2022] PIERM 112 [2022] PIERM 111 [2022] PIERM 110 [2022] PIERM 109 [2022] PIERM 108 [2022] PIERM 107 [2022] PIERM 106 [2021] PIERM 105 [2021] PIERM 104 [2021] PIERM 103 [2021] PIERM 102 [2021] PIERM 101 [2021] PIERM 100 [2021] PIERM 99 [2021] PIERM 98 [2020] PIERM 97 [2020] PIERM 96 [2020] PIERM 95 [2020] PIERM 94 [2020] PIERM 93 [2020] PIERM 92 [2020] PIERM 91 [2020] PIERM 90 [2020] PIERM 89 [2020] PIERM 88 [2020] PIERM 87 [2019] PIERM 86 [2019] PIERM 85 [2019] PIERM 84 [2019] PIERM 83 [2019] PIERM 82 [2019] PIERM 81 [2019] PIERM 80 [2019] PIERM 79 [2019] PIERM 78 [2019] PIERM 77 [2019] PIERM 76 [2018] PIERM 75 [2018] PIERM 74 [2018] PIERM 73 [2018] PIERM 72 [2018] PIERM 71 [2018] PIERM 70 [2018] PIERM 69 [2018] PIERM 68 [2018] PIERM 67 [2018] PIERM 66 [2018] PIERM 65 [2018] PIERM 64 [2018] PIERM 63 [2018] PIERM 62 [2017] PIERM 61 [2017] PIERM 60 [2017] PIERM 59 [2017] PIERM 58 [2017] PIERM 57 [2017] PIERM 56 [2017] PIERM 55 [2017] PIERM 54 [2017] PIERM 53 [2017] PIERM 52 [2016] PIERM 51 [2016] PIERM 50 [2016] PIERM 49 [2016] PIERM 48 [2016] PIERM 47 [2016] PIERM 46 [2016] PIERM 45 [2016] PIERM 44 [2015] PIERM 43 [2015] PIERM 42 [2015] PIERM 41 [2015] PIERM 40 [2014] PIERM 39 [2014] PIERM 38 [2014] PIERM 37 [2014] PIERM 36 [2014] PIERM 35 [2014] PIERM 34 [2014] PIERM 33 [2013] PIERM 32 [2013] PIERM 31 [2013] PIERM 30 [2013] PIERM 29 [2013] PIERM 28 [2013] PIERM 27 [2012] PIERM 26 [2012] PIERM 25 [2012] PIERM 24 [2012] PIERM 23 [2012] PIERM 22 [2012] PIERM 21 [2011] PIERM 20 [2011] PIERM 19 [2011] PIERM 18 [2011] PIERM 17 [2011] PIERM 16 [2011] PIERM 14 [2010] PIERM 13 [2010] PIERM 12 [2010] PIERM 11 [2010] PIERM 10 [2009] PIERM 9 [2009] PIERM 8 [2009] PIERM 7 [2009] PIERM 6 [2009] PIERM 5 [2008] PIERM 4 [2008] PIERM 3 [2008] PIERM 2 [2008] PIERM 1 [2008]
2022-04-26
Optimal Design of Double-Sided Linear Flux Switching Permanent Magnet Motor
By
Progress In Electromagnetics Research M, Vol. 110, 39-48, 2022
Abstract
This paper studies the optimal design of a double-sided linear flux switching permanent magnet motor (DLFSPM) to improve the average thrust generated by motor operation and reduce the fluctuation range of thrust applying the Response surface methodology (RSM) and Particle Swarm Optimization (PSO). An analytical mathematical model of the electromagnetic thrust force of the DLFSPMs is developed. The functional model of the optimization parameters and objectives based on the RSM is constructed. The finite element analysis (FEA) is used to carry out numerical experiments on the geometric structure design variables. PSO is applied to an optimization tool for optimizing the DLFSPMs' mover structure parameters. Finally, the FEA comparison and analysis of the optimization results with the initial results reveal a significant improvement in the electromagnetic characteristics of the DLFSPMs. The feasibility and effectiveness of the optimization method are verified by the FEA results.
Citation
Qiankai Zhao, Cheng Wen, Xingqiao Zhao, Mingwei Li, Kailin Lv, and Xin Wang, "Optimal Design of Double-Sided Linear Flux Switching Permanent Magnet Motor," Progress In Electromagnetics Research M, Vol. 110, 39-48, 2022.
doi:10.2528/PIERM22021704
References

1. Liu, Y., X. Zhang, and S. Niu, "A permanent magnet linear motor with complementary flux and its optimization," IEEE Transactions on Magnetics, Vol. 55, No. 6, 1-5, June 2019.

2. Kwon, Y. and W. Kim, "Electromagnetic analysis and steady-state performance of double-sided flat linear motor using soft magnetic composite," IEEE Transactions on Industrial Electronics, Vol. 64, No. 3, 2178-2187, March 2017.
doi:10.1109/TIE.2016.2619658

3. Lu, M. and R. Cao, "A novel double-sided high temperature superconducting linear modular flux-switching motor," IEEE Transactions on Applied Superconductivity, Vol. 31, No. 5, 1-10, August 2021.

4. Cao, R., M. Cheng, C. C. Mi, and W. Hua, "Influence of leading design parameters on the force performance of a complementary and modular linear flux-switching permanent-magnet motor," IEEE Transactions on Industrial Electronics, Vol. 61, No. 5, 2165-2175, May 2014.
doi:10.1109/TIE.2013.2271603

5. Zhao, W., M. Cheng, J. Ji, R. Cao, Y. Du, and F. Li, "Design and analysis of a new fault-tolerant linear permanent-magnet motor for maglev transportation applications," IEEE Transactions on Applied Superconductivity, Vol. 22, No. 3, 5200204-5200204, June 2012.
doi:10.1109/TASC.2012.2185209

6. Wu, J., X. Zhu, Z. Xiang, L. Xu, M. Jiang, and W. Pu, "Electromagnetic performance prediction of a double-rotor flux-switching motor based on general air-gap equivalent algorithms model," 2019 22nd International Conference on Electrical Machines and Systems (ICEMS), 1-6, Harbin, China, 2019.

7. Wang, X., J. Wu, R. Luo, and J. Li, "Design optimization of thrust density for permanent magnet linear motor based on genetic algorithm," 2018 IEEE 4th Information Technology and Mechatronics Engineering Conference (ITOEC), 1192-1198, Chongqing, China, 2018.

8. Sun, X., Z. Shi, and J. Zhu, "Multiobjective design optimization of an IPMSM for EVs based on fuzzy method and sequential taguchi method," IEEE Transactions on Industrial Electronics, Vol. 68, No. 11, 10592-10600, November 2021.
doi:10.1109/TIE.2020.3031534

9. Sun, X., Z. Shi, G. Lei, Y. Guo, and J. Zhu, "Multi-objective design optimization of an IPMSM based on multilevel strategy," IEEE Transactions on Industrial Electronics, Vol. 68, No. 1, 139-148, January 2021.
doi:10.1109/TIE.2020.2965463

10. Shi, Z., X. Sun, Y. Cai, and Z. Yang, "Robust design optimization of a five-phase PM hub motor for fault-tolerant operation based on taguchi method," IEEE Transactions on Energy Conversion, Vol. 35, No. 4, 2036-2044, December 2020.
doi:10.1109/TEC.2020.2989438

11. Pan, Z. and S. Fang, "Combined random forest and NSGA-II for optimal design of permanent magnet arc motor," IEEE Journal of Emerging and Selected Topics in Power Electronics, 2021.

12. Liu, Q., et al. "Cogging force reduction of double-sided linear flux-switching permanent magnet machine for direct drives," IEEE Transactions on Magnetics, Vol. 49, No. 5, 2275-2278, May 2013.
doi:10.1109/TMAG.2013.2241409

13. Cheng, M., P. Han, and W. Hua, "General airgap field modulation theory for electrical machines," IEEE Transactions on Industrial Electronics, Vol. 64, No. 8, 6063-6074, August 2017.
doi:10.1109/TIE.2017.2682792

14. Aun, T., N. M. Salleh, U. F. M. Ali, and N. S. A. Manan, "Optimization of a Cu-O-based sensor for the detection of glucose using a central composite design," IEEE Sensors Journal, Vol. 20, No. 20, 12109-12116, October 15, 2020.
doi:10.1109/JSEN.2020.3000346

15. Chan, K. S., S. J. Greaves, and S. Rahardja, "Techniques for addressing saddle points in the Response Surface Methodology (RSM)," IEEE Access, Vol. 7, 85613-85621, 2019.
doi:10.1109/ACCESS.2019.2922975

16. Kennedy, J. and R. Eberhart, "Particle swarm optimization," Proceedings of ICNN'95 - International Conference on Neural Networks, Vol. 4, 1942-1948, Perth, WA, Australia, 1995.

17. Tang, G., J. Sheng, D. Wang, and S. Men, "Continuous estimation of human upper limb joint angles by using PSO-LSTM model," IEEE Access, Vol. 9, 17986-17997, 2021.
doi:10.1109/ACCESS.2020.3047828