Vol. 125
Latest Volume
All Volumes
PIERC 143 [2024] PIERC 142 [2024] PIERC 141 [2024] PIERC 140 [2024] PIERC 139 [2024] PIERC 138 [2023] PIERC 137 [2023] PIERC 136 [2023] PIERC 135 [2023] PIERC 134 [2023] PIERC 133 [2023] PIERC 132 [2023] PIERC 131 [2023] PIERC 130 [2023] PIERC 129 [2023] PIERC 128 [2023] PIERC 127 [2022] PIERC 126 [2022] PIERC 125 [2022] PIERC 124 [2022] PIERC 123 [2022] PIERC 122 [2022] PIERC 121 [2022] PIERC 120 [2022] PIERC 119 [2022] PIERC 118 [2022] PIERC 117 [2021] PIERC 116 [2021] PIERC 115 [2021] PIERC 114 [2021] PIERC 113 [2021] PIERC 112 [2021] PIERC 111 [2021] PIERC 110 [2021] PIERC 109 [2021] PIERC 108 [2021] PIERC 107 [2021] PIERC 106 [2020] PIERC 105 [2020] PIERC 104 [2020] PIERC 103 [2020] PIERC 102 [2020] PIERC 101 [2020] PIERC 100 [2020] PIERC 99 [2020] PIERC 98 [2020] PIERC 97 [2019] PIERC 96 [2019] PIERC 95 [2019] PIERC 94 [2019] PIERC 93 [2019] PIERC 92 [2019] PIERC 91 [2019] PIERC 90 [2019] PIERC 89 [2019] PIERC 88 [2018] PIERC 87 [2018] PIERC 86 [2018] PIERC 85 [2018] PIERC 84 [2018] PIERC 83 [2018] PIERC 82 [2018] PIERC 81 [2018] PIERC 80 [2018] PIERC 79 [2017] PIERC 78 [2017] PIERC 77 [2017] PIERC 76 [2017] PIERC 75 [2017] PIERC 74 [2017] PIERC 73 [2017] PIERC 72 [2017] PIERC 71 [2017] PIERC 70 [2016] PIERC 69 [2016] PIERC 68 [2016] PIERC 67 [2016] PIERC 66 [2016] PIERC 65 [2016] PIERC 64 [2016] PIERC 63 [2016] PIERC 62 [2016] PIERC 61 [2016] PIERC 60 [2015] PIERC 59 [2015] PIERC 58 [2015] PIERC 57 [2015] PIERC 56 [2015] PIERC 55 [2014] PIERC 54 [2014] PIERC 53 [2014] PIERC 52 [2014] PIERC 51 [2014] PIERC 50 [2014] PIERC 49 [2014] PIERC 48 [2014] PIERC 47 [2014] PIERC 46 [2014] PIERC 45 [2013] PIERC 44 [2013] PIERC 43 [2013] PIERC 42 [2013] PIERC 41 [2013] PIERC 40 [2013] PIERC 39 [2013] PIERC 38 [2013] PIERC 37 [2013] PIERC 36 [2013] PIERC 35 [2013] PIERC 34 [2013] PIERC 33 [2012] PIERC 32 [2012] PIERC 31 [2012] PIERC 30 [2012] PIERC 29 [2012] PIERC 28 [2012] PIERC 27 [2012] PIERC 26 [2012] PIERC 25 [2012] PIERC 24 [2011] PIERC 23 [2011] PIERC 22 [2011] PIERC 21 [2011] PIERC 20 [2011] PIERC 19 [2011] PIERC 18 [2011] PIERC 17 [2010] PIERC 16 [2010] PIERC 15 [2010] PIERC 14 [2010] PIERC 13 [2010] PIERC 12 [2010] PIERC 11 [2009] PIERC 10 [2009] PIERC 9 [2009] PIERC 8 [2009] PIERC 7 [2009] PIERC 6 [2009] PIERC 5 [2008] PIERC 4 [2008] PIERC 3 [2008] PIERC 2 [2008] PIERC 1 [2008]
2022-10-13
A Taguchi-Preconditioned GA Method for the Design Optimization of a PM Vernier Motor
By
Progress In Electromagnetics Research C, Vol. 125, 133-146, 2022
Abstract
This paper presents an efficient Taguchi-preconditioned genetic algorithm (TPGA) strategy for the design optimization of a 630-kW permanent magnet vernier motor (PMVM). In the TPGA, firstly, the Taguchi method is combined with comparative finite element analyses (FEA) to judge the influence factors of six typical structural parameters on the torque output. Secondly, four influential parameters are taken from the six typical ones and decided as the variables in the global optimization processes coupling genetic algorithm (GA) and FEA. As two variables with small influence factors are set to constants in the computationally costly optimization processes, the calculation burden can thus be effectively reduced. Thirdly, with the four influential optimization variables, FEA-assisted GA is used to maximize the output torque of the PMVM. During the global optimization processes, a preliminarily optimized structural configuration obtained from the Taguchi analyses is used as the initial values of the variables. Finally, the working performances of the machine with the optimal parameters are obtained through FEM calculations. The optimization effectiveness is validated by comparing the output torque of the GA-optimized machine with that of the initial and the Taguchi-preliminary optimized ones.
Citation
Gaojia Zhu, Shijie Liu, Longnv Li, Yishuang Zhao, Shengyang Hu, and Yiran Yun, "A Taguchi-Preconditioned GA Method for the Design Optimization of a PM Vernier Motor," Progress In Electromagnetics Research C, Vol. 125, 133-146, 2022.
doi:10.2528/PIERC22071905
References

1. Jian, L. N., W. S. Gong, G. Q. Xu, J. N. Liang, and W. X. Zhao, "Integrated magnetic-geared machine with sandwiched armature stator for low-speed large-torque applications," IEEE Trans. Magn., Vol. 48, No. 11, 4184-4187, Nov. 201.
doi:10.1109/TMAG.2012.2198443

2. Liu, C. T., K. Y. Hung, and C. C. Hwang, "Developments of an efficient analytical scheme for optimal composition designs of tubular linear magnetic-geared machines," IEEE Trans. Magn., Vol. 52, No. 7, Art. No. 8202404, Jul. 2016.

3. Fang, Y. N., X. H. Liang, and M. J. Zuo, "Effect of sliding friction on transient characteristics of a gear transmission under random loading," Proc. 2017 IEEE International Conference on Systems, Man, and Cybernetics (SMC), 2551-2555, Banff, AB, Canada, Nov. 2017.

4. Chen, S. Q., J. Y. Zhao, B. W. Li, Z. Xu, and Y. Q. Feng, "Nonlinear dynamic model and governing equations of low speed and high load planetary gear train with respect to friction," Proc. 2011 International Conference on Consumer Electronics, Communications and Networks (CECNet), 3274-3278, Xianning, China, Apr. 2011.

5. Atallah, K. and D. Howe, "A novel high-performance magnetic gear," IEEE Trans. Magn., Vol. 37, No. 4, 2844-2846, Jul. 2001.
doi:10.1109/20.951324

6. Cooke, G., R. S. Dragan, R. Barrett, D. J. Powell, S. Graham, and K. Atallah, "Magnetically geared propulsion motor for subsea remote operated vehicle," IEEE Trans. Magn., Vol. 58, No. 2, Art. No. 8201005, Feb. 2022.

7. Fu, W. N. and S. L. Ho, "A quantitative comparative analysis of a novel flux-modulated permanent-magnet motor for low-speed drive," IEEE Trans. Magn., Vol. 46, No. 1, 127-134, Jan. 201.
doi:10.1109/TMAG.2009.2030677

8. Li, J. G. and K. T. Chau, "Performance and cost comparison of permanent-magnet vernier machines," IEEE Trans. Magn., Vol. 22, No. 3, Art. No. 5202304, Jun. 2012.

9. Toba, A. and T. A. Lipo, "Generic torque-maximizing design methodology of surface permanent-magnet vernier machine," IEEE Trans. Ind. Appl., Vol. 36, No. 6, 1539-1546, Nov./Dec. 2000.

10. Zhao, X., S. X. Niu, and W. N. Fu, "Torque component quantification and design guideline for dual permanent magnet vernier machine," IEEE Trans. Magn., Vol. 55, No. 6, Art. No. 8101905, Jun. 2019.

11. Ma, Y., Y. Xiao, J. Wang, and L. Zhou, "Multicriteria optimal Latin hypercube design-based surrogate-assisted design optimization fora permanent-magnet vernier machine," IEEE Trans. Magn., Vol. 58, No. 2, Art. No. 8101205, Feb. 2022.

12. Feng, G. D., C. Y. Lai, M. Kelly, and N. C. Kar, "Dual three-phase PMSM torque modeling and maximum torque per peak current control through optimized harmonic current injection," IEEE Trans. Ind. Electron., Vol. 66, No. 5, 3356-3368, May 2019.
doi:10.1109/TIE.2018.2854550

13. Lai, C. Y., G. D. Feng, K. L. V. Iyer, K. Mukherjee, and N. C. Kar, "Genetic algorithm-based current optimization for torque ripple reduction of interior PMSMs," IEEE Trans. Ind. Appl., Vol. 53, No. 5, 4493-4503, Sept./Oct. 2017.
doi:10.1109/TIA.2017.2704063

14. Lin, Q. F., S. X. Niu, and W. N. Fu, "Design and optimization of a dual-permanent-magnet vernier machine with a novel optimization model," IEEE Trans. Magn., Vol. 56, No. 3, Art. No. 7512705, Mar. 2020.

15. Wang, Q. L., F. Zhao, and K. Yang, "Analysis and optimization of the axial electromagnetic forcefor an axial-flux permanent magnet vernier machine," IEEE Trans. Magn., Vol. 57, No. 2, Art. No. 8100605, Feb. 2021.

16. Sorgdrager, A. J., R. J. Wang, and A. J. Grobler, "Multiobjective design of a line-start PM motor using the Taguchi method," IEEE Trans. Ind. Appl., Vol. 54, No. 5, 4167-4176, Sept./Oct. 2018.
doi:10.1109/TIA.2018.2834306

17. Giurgea, S., D. Fodorean, G. Cirrincione, A. Miraoui, and M. Cirrincione, "Multimodel optimization based on the response surface of the reduced FEM simulation model with application to a PMSM," IEEE Trans. Magn., Vol. 44, No. 9, 2153-2157, Sept. 2008.
doi:10.1109/TMAG.2008.2000497

18. Shin, P. S., S. H. Woo, Y. L. Zhang, and C. S. Koh, "An application of Latin hypercube sampling strategy for cogging torque reduction of large-scale permanent magnet motor," IEEE Trans. Magn., Vol. 44, No. 11, 4421-4424, Nov. 2008.
doi:10.1109/TMAG.2008.2002479

19. Sun, X., Z. Shi, and J. Zhu, "Multiobjective design optimization of an IPMSM for EVs based on fuzzy method and sequential Taguchi method," IEEE Trans. Ind. Electron., Vol. 68, No. 11, 10592-10600, Nov. 2021.
doi:10.1109/TIE.2020.3031534

20. Zhu, G. J., L. N. Li, Y. H. Mei, T. Liu, and M. Xue, "Design and analysis of a self-circulated oil cooling system enclosed in hollow shafts for axial-flux PMSMs," IEEE Trans. Veh. Technol., Vol. 71, No. 5, 4879-4888, May 2022.
doi:10.1109/TVT.2022.3154150

21. Khan, M. A., I. Husain, M. R. Islam, and J. T. Klass, "Design of experiments to address manufacturing tolerances and process variations influencing cogging torque and back EMF in the mass production of the permanent-magnet synchronous motors," IEEE Trans. Ind. Appl., Vol. 50, No. 1, 346-355, Jan./Feb. 2014.
doi:10.1109/TIA.2013.2271473