Vol. 127
Latest Volume
All Volumes
PIERC 143 [2024] PIERC 142 [2024] PIERC 141 [2024] PIERC 140 [2024] PIERC 139 [2024] PIERC 138 [2023] PIERC 137 [2023] PIERC 136 [2023] PIERC 135 [2023] PIERC 134 [2023] PIERC 133 [2023] PIERC 132 [2023] PIERC 131 [2023] PIERC 130 [2023] PIERC 129 [2023] PIERC 128 [2023] PIERC 127 [2022] PIERC 126 [2022] PIERC 125 [2022] PIERC 124 [2022] PIERC 123 [2022] PIERC 122 [2022] PIERC 121 [2022] PIERC 120 [2022] PIERC 119 [2022] PIERC 118 [2022] PIERC 117 [2021] PIERC 116 [2021] PIERC 115 [2021] PIERC 114 [2021] PIERC 113 [2021] PIERC 112 [2021] PIERC 111 [2021] PIERC 110 [2021] PIERC 109 [2021] PIERC 108 [2021] PIERC 107 [2021] PIERC 106 [2020] PIERC 105 [2020] PIERC 104 [2020] PIERC 103 [2020] PIERC 102 [2020] PIERC 101 [2020] PIERC 100 [2020] PIERC 99 [2020] PIERC 98 [2020] PIERC 97 [2019] PIERC 96 [2019] PIERC 95 [2019] PIERC 94 [2019] PIERC 93 [2019] PIERC 92 [2019] PIERC 91 [2019] PIERC 90 [2019] PIERC 89 [2019] PIERC 88 [2018] PIERC 87 [2018] PIERC 86 [2018] PIERC 85 [2018] PIERC 84 [2018] PIERC 83 [2018] PIERC 82 [2018] PIERC 81 [2018] PIERC 80 [2018] PIERC 79 [2017] PIERC 78 [2017] PIERC 77 [2017] PIERC 76 [2017] PIERC 75 [2017] PIERC 74 [2017] PIERC 73 [2017] PIERC 72 [2017] PIERC 71 [2017] PIERC 70 [2016] PIERC 69 [2016] PIERC 68 [2016] PIERC 67 [2016] PIERC 66 [2016] PIERC 65 [2016] PIERC 64 [2016] PIERC 63 [2016] PIERC 62 [2016] PIERC 61 [2016] PIERC 60 [2015] PIERC 59 [2015] PIERC 58 [2015] PIERC 57 [2015] PIERC 56 [2015] PIERC 55 [2014] PIERC 54 [2014] PIERC 53 [2014] PIERC 52 [2014] PIERC 51 [2014] PIERC 50 [2014] PIERC 49 [2014] PIERC 48 [2014] PIERC 47 [2014] PIERC 46 [2014] PIERC 45 [2013] PIERC 44 [2013] PIERC 43 [2013] PIERC 42 [2013] PIERC 41 [2013] PIERC 40 [2013] PIERC 39 [2013] PIERC 38 [2013] PIERC 37 [2013] PIERC 36 [2013] PIERC 35 [2013] PIERC 34 [2013] PIERC 33 [2012] PIERC 32 [2012] PIERC 31 [2012] PIERC 30 [2012] PIERC 29 [2012] PIERC 28 [2012] PIERC 27 [2012] PIERC 26 [2012] PIERC 25 [2012] PIERC 24 [2011] PIERC 23 [2011] PIERC 22 [2011] PIERC 21 [2011] PIERC 20 [2011] PIERC 19 [2011] PIERC 18 [2011] PIERC 17 [2010] PIERC 16 [2010] PIERC 15 [2010] PIERC 14 [2010] PIERC 13 [2010] PIERC 12 [2010] PIERC 11 [2009] PIERC 10 [2009] PIERC 9 [2009] PIERC 8 [2009] PIERC 7 [2009] PIERC 6 [2009] PIERC 5 [2008] PIERC 4 [2008] PIERC 3 [2008] PIERC 2 [2008] PIERC 1 [2008]
2022-12-22
Compact, Gain-Enhanced, Linearly Tapered Slot Antenna with a Combined Director Using a Strip Director and Double-Sided Metamaterial Loading for UWB Applications
By
Progress In Electromagnetics Research C, Vol. 127, 263-277, 2022
Abstract
A compact, gain-enhanced, linearly tapered slot antenna (LTSA) with hook-shaped slots in the ground plane and a combined director, consisting of a metallic strip director and double-sided metamaterial (DS-MTM) loading surrounding it, is proposed for ultra wide band (UWB) applications. Hook-shaped slots are appended in the ground plane for miniaturization, whereas a combination of the metallic strip and DS-MTM loading placed above the LTSA is used for gain enhancement. Performance of the proposed combined director is compared with other commonly used director configurations in the literature, such as single strip director, two strip directors, and two-layers of DS-MTM. It was found that gain enhancement effect of the proposed combined director is the greatest over the UWB band, compared to other director configurations. The fabricated prototype of the proposed antenna operates from 2.83 GHz to 11.31 GHz (119.9%) for a voltage standing wave ratio less than 2 with moderate gain of 3.2-7.5 dBi. The dimensions of the proposed LTSA in terms of the free space wavelength at the lowest frequency (λ0) are 0.28λ0 × 0.30λ0 × 0.0075λ0 (30 mm × 32 mm × 0.8 mm), which are very compact.
Citation
Junho Yeo, "Compact, Gain-Enhanced, Linearly Tapered Slot Antenna with a Combined Director Using a Strip Director and Double-Sided Metamaterial Loading for UWB Applications," Progress In Electromagnetics Research C, Vol. 127, 263-277, 2022.
doi:10.2528/PIERC22102801
References

1. Federal Communications Commission, Washington, DC, "FCC report and order on ultra wideband technology,", 2002.

2. Schantz, H., The Art and Science of Ultrawideband Antennas, Artech House, Norwood, 2005.
doi:10.2528/PIERL18080105

3. Yeo, J., "Miniaturized UWB stepped open-slot antenna," Progress In Electromagnetics Research Letters, Vol. 78, 119-127, 2018.
doi:10.1109/TAP.1960.1144889

4. Eberle, J., C. Levis, and D. McCoy, "The flared slot: A moderately directive flush-mounted broad-band antenna," IRE Trans. Antennas Propag., Vol. 8, No. 5, 461-468, Sep. 1960.

5. Gibson, P. J., "The Vivaldi aerial," Proc. 9th Eu. Microw. Conf., Vol. 1, 101-105, 1979.

6. Abbosh, A., M. Bialkowski, and H. Kan, "Planar tapered slot antennas," Printed Antennas for Wireless Communications, Ch. 6, 161-162, John Wiley & Sons, Hoboken, NJ, 2007.
doi:10.1002/mmce.20673

7. Zhu, F., S. Gao, A. T. S. Ho, C. H. See, R. A. Abd-Alhameed, J. Li, and J. Xu, "Compact-size linearly tapered slot antenna for portable ultra-wideband imaging systems," Int. J. RF Microwave Comput. --- Aided Eng., Vol. 23, No. 3, 290-299, Aug. 2012.

8. Zhu, F. and S. Gao, "Compact elliptically tapered slot antenna with nonuniform corrugations for ultra-wideband applications," Radioengineering, Vol. 22, No. 1, 276-280, Apr. 2013.
doi:10.2528/PIER14043003

9. Ma, K., Z. Zhao, J. Wu, S. M. Ellis, and Z. P. Nie, "A printed Vivaldi antenna with improved radiation patterns by using two pairs of eye-shaped slots for UWB applications," Progress In Electromagnetics Research, Vol. 148, 63-71, 2014.
doi:10.1109/ACCESS.2017.2766184

10. Yang, D., S. Liu, and D. Geng, "A miniaturized ultra-wideband Vivaldi antenna with low cross polarization," IEEE Access, Vol. 5, 23352-23357, 2017.
doi:10.3390/s20215988

11. Seo, J., J. H. Kim, and J. Oh, "Semicircular patch-embedded Vivaldi antenna for miniaturized UWB radar sensors," Sensors, Vol. 20, 5988, 2020.
doi:10.3390/electronics10010083

12. Honari, M. M., M. S. Ghaffarian, and R. Mirzavand, "Miniaturized antipodal Vivaldi antenna with improved bandwidth using exponential strip arms," Electronics, Vol. 10, 83, 2021.
doi:10.1016/j.aej.2021.09.055

13. Saleh, S., W. Ismail, I. S. Z. Abidin, M. H. Jamaluddin, M. H. Bataineh, and A. S. Alzoubi, "Compact UWB Vivaldi tapered slot antenna," Alex. Eng J., Vol. 61, No. 6, 4977-4994, Jun. 2022.
doi:10.1109/TAP.2015.2429749

14. Nassar, I. T. and T. M. Weller, "A novel method for improving antipodal Vivaldi antenna performance," IEEE Trans. Antennas Propag., Vol. 63, No. 7, 3321-3324, Jul. 2015.
doi:10.1002/mop.31873

15. Samsuzzaman, M., M. T. Islam, A. A. S. Shovon, R. I. Faruque, and N. Misran, "A 16-modified antipodal Vivaldi antenna array for microwave-based breast tumor imaging applications," Microw. Opt. Technol. Lett., Vol. 61, No. 9, 2110-2118, Jun. 2019.

16. Li, Z., X. Kang, J. Su, Q. Guo, Y. Yang, and J. Wang, "A wideband end-fire conformal Vivaldi antenna array mounted on a dielectric cone," Int. J. Antennas Propag., Vol. 2016, Art. No. 9812642, Aug. 2016.
doi:10.1002/mop.30988

17. Gao, C., E. Li, Y. Zhang, and G. Guo, "A directivity enhanced structure for the Vivaldi antenna using coupling patches," Microw. Opt. Technol. Lett., Vol. 60, No. 2, 418-424, Jan. 2018.
doi:10.1109/TAP.2010.2048844

18. Bourqui, J., M. Okoniewski, and E. C. Fear, "Balanced antipodal Vivaldi antenna with dielectric director for near-field microwave imaging," IEEE Trans. Antennas Propag., Vol. 58, No. 7, 2318-2326, Jul. 2010.
doi:10.1049/iet-map.2014.0207

19. Molaei, A., M. Kaboli, M. S. Abrishamian, and S. A. Mirtaheri, "Dielectric lens balanced antipodal Vivaldi antenna with low cross-polarisation for ultra-wideband applications," IET Microw., Antennas Propag., Vol. 8, No. 14, 1137-1142, Nov. 2014.
doi:10.1109/LAWP.2016.2633536

20. Moosazadeh, M., S. Kharkovsky, J. T. Case, and B. Samali, "Miniaturized UWB antipodal Vivaldi antenna and its application for detection of void inside concrete specimens," IEEE Antennas Wireless Propag. Lett., Vol. 16, 1317-1320, 2017.
doi:10.1109/LAWP.2015.2457919

21. Moosazadeh, M. and S. Kharkovsky, "A compact high-gain and front-to-back ratio elliptically tapered antipodal Vivaldi antenna with trapezoid-shaped dielectric lens," IEEE Antennas Wireless Propag. Lett., Vol. 15, 552-555, 2016.

22. Amiri, M., F. Tofigh, A. Ghafoorzadeh-Yazdi, and M. Abolhasan, "Exponential antipodal Vivaldi antenna with exponential dielectric lens," IEEE Antennas Wireless Propag. Lett., Vol. 16, 1792-1795, 2017.
doi:10.1080/09205071.2017.1393350

23. Huang, D., H. Yang, Y. Wu, F. Zhao, and X. Liu, "A high-gain antipodal Vivaldi antenna with multi-layer planar dielectric lens," Journal of Electromagnetic Waves and Applications, Vol. 32, No. 4, 403-412, Oct. 2017.
doi:10.2528/PIERC17070308

24. Li, X. X., D. W. Pang, H. L.Wang, Y. M. Zhang, and G. Q. Lv, "Dielectric slabs covered broadband Vivaldi antenna for gain enhancement," Progress In Electromagnetics Research C, Vol. 77, 69-80, 2017.
doi:10.1109/LAWP.2011.2142170

25. Zhou, B. and T. J. Cui, "Directivity enhancement to Vivaldi antennas using compactly anisotropic zero-index metamaterials," IEEE Antennas Wireless Propag. Lett., Vol. 10, 326-329, 2011.
doi:10.1007/s00339-015-9569-2

26. Pandey, G. K., H. S. Singh, and M. K. Meshram, "Meander-line-based inhomogeneous anisotropic artificial material for gain enhancement of UWB Vivaldi antenna," Appl. Phys. A, Vol. 122, 134, 2016.
doi:10.1007/s00339-018-2132-1

27. Boujemaa, M.-A., R. Herzi, F. Choubani, and A. Gharsallah, "UWB antipodal Vivaldi antenna with higher radiation performances using metamaterials," Appl. Phys. A, Vol. 124, No. 10, 714, 1-7, Sep. 2018.
doi:10.1109/ACCESS.2018.2883097

28. Zhu, S., H. Liu, P. Wen, L. Du, and J. Zhou, "A miniaturized and high gain double-slot Vivaldi antenna using wideband index-near-zero metasurface," IEEE Access, Vol. 6, 72015-72024, 2018.
doi:10.1038/s41598-019-53857-0

29. Islam, M. T., M. Samsuzzaman, S. Kibria, N. Misran, and M. T. Islam, "Metasurface loaded high gain antenna based microwave imaging using iteratively corrected delay multiply and sum algorithm," Sci. Rep., Vol. 9, 17317, 2019.
doi:10.1109/TAP.2014.2365044

30. Chen, L., Z. Lei, R. Yang, J. Fan, and X. Shi, "A broadband artificial material for gain enhancement of antipodal tapered slot antenna," IEEE Trans. Antennas Propag., Vol. 63, No. 1, 395-400, Jan. 2015.
doi:10.1002/mmce.21109

31. Li, X., G. Liu, Y. Zhang, L. Sang, and G. Lv, "A compact multi-layer phase correcting lens to improve directive radiation of Vivaldi antenna," Int. J. RF Microw. Comput. --- Aided Eng., Vol. 27, No. 7, Apr. 2017.
doi:10.1109/LAWP.2017.2754860

32. Li, X., H. Zhou, Z. Gao, H. Wang, and G. Lv, "Metamaterial slabs covered UWB antipodal Vivaldi antenna," IEEE Antennas Wireless Propag. Lett., Vol. 16, 2943-2946, 2017.

33. Electromagnetic Simulation Solvers, CST Studio Suite, , Available online: https://www.3ds.com/ko/products-services/simulia/products/cst-studio-suite/solvers/ (accessed on 23 November 2022).
doi:10.3390/s19051212

34. Tseng, V. and C. Y. Chang, "Linear tapered slot antenna for ultra-wideband radar sensor: design consideration and recommendation," Sensors, Vol. 19, No. 5, 1212, 2019.

35. Huang, Y. and K. Boyle, Antennas: From Theory to Practice, John Wiley & Sons, Inc., Hoboken, NJ, 2008.
doi:10.1109/TMTT.2010.2065310

36. Szabό, Z., G. Park, R. Hedge, and E. Li, "A unique extraction of metamaterial parameters based on Kramers-Kronig relationship," IEEE Trans. Microw. Theory Techn., Vol. 58, No. 10, 2646-2653, Oct. 2010.
doi:10.1109/TAP.2019.2934580

37. Ma, X., M. S. Mirmoosa, and S. A. Tretyakov, "Parallel-plate waveguides formed by penetrable metasurfaces," IEEE Trans. Antennas Propag., Vol. 68, No. 3, 1773, Mar. 2020.