Vol. 139
Latest Volume
All Volumes
PIERC 143 [2024] PIERC 142 [2024] PIERC 141 [2024] PIERC 140 [2024] PIERC 139 [2024] PIERC 138 [2023] PIERC 137 [2023] PIERC 136 [2023] PIERC 135 [2023] PIERC 134 [2023] PIERC 133 [2023] PIERC 132 [2023] PIERC 131 [2023] PIERC 130 [2023] PIERC 129 [2023] PIERC 128 [2023] PIERC 127 [2022] PIERC 126 [2022] PIERC 125 [2022] PIERC 124 [2022] PIERC 123 [2022] PIERC 122 [2022] PIERC 121 [2022] PIERC 120 [2022] PIERC 119 [2022] PIERC 118 [2022] PIERC 117 [2021] PIERC 116 [2021] PIERC 115 [2021] PIERC 114 [2021] PIERC 113 [2021] PIERC 112 [2021] PIERC 111 [2021] PIERC 110 [2021] PIERC 109 [2021] PIERC 108 [2021] PIERC 107 [2021] PIERC 106 [2020] PIERC 105 [2020] PIERC 104 [2020] PIERC 103 [2020] PIERC 102 [2020] PIERC 101 [2020] PIERC 100 [2020] PIERC 99 [2020] PIERC 98 [2020] PIERC 97 [2019] PIERC 96 [2019] PIERC 95 [2019] PIERC 94 [2019] PIERC 93 [2019] PIERC 92 [2019] PIERC 91 [2019] PIERC 90 [2019] PIERC 89 [2019] PIERC 88 [2018] PIERC 87 [2018] PIERC 86 [2018] PIERC 85 [2018] PIERC 84 [2018] PIERC 83 [2018] PIERC 82 [2018] PIERC 81 [2018] PIERC 80 [2018] PIERC 79 [2017] PIERC 78 [2017] PIERC 77 [2017] PIERC 76 [2017] PIERC 75 [2017] PIERC 74 [2017] PIERC 73 [2017] PIERC 72 [2017] PIERC 71 [2017] PIERC 70 [2016] PIERC 69 [2016] PIERC 68 [2016] PIERC 67 [2016] PIERC 66 [2016] PIERC 65 [2016] PIERC 64 [2016] PIERC 63 [2016] PIERC 62 [2016] PIERC 61 [2016] PIERC 60 [2015] PIERC 59 [2015] PIERC 58 [2015] PIERC 57 [2015] PIERC 56 [2015] PIERC 55 [2014] PIERC 54 [2014] PIERC 53 [2014] PIERC 52 [2014] PIERC 51 [2014] PIERC 50 [2014] PIERC 49 [2014] PIERC 48 [2014] PIERC 47 [2014] PIERC 46 [2014] PIERC 45 [2013] PIERC 44 [2013] PIERC 43 [2013] PIERC 42 [2013] PIERC 41 [2013] PIERC 40 [2013] PIERC 39 [2013] PIERC 38 [2013] PIERC 37 [2013] PIERC 36 [2013] PIERC 35 [2013] PIERC 34 [2013] PIERC 33 [2012] PIERC 32 [2012] PIERC 31 [2012] PIERC 30 [2012] PIERC 29 [2012] PIERC 28 [2012] PIERC 27 [2012] PIERC 26 [2012] PIERC 25 [2012] PIERC 24 [2011] PIERC 23 [2011] PIERC 22 [2011] PIERC 21 [2011] PIERC 20 [2011] PIERC 19 [2011] PIERC 18 [2011] PIERC 17 [2010] PIERC 16 [2010] PIERC 15 [2010] PIERC 14 [2010] PIERC 13 [2010] PIERC 12 [2010] PIERC 11 [2009] PIERC 10 [2009] PIERC 9 [2009] PIERC 8 [2009] PIERC 7 [2009] PIERC 6 [2009] PIERC 5 [2008] PIERC 4 [2008] PIERC 3 [2008] PIERC 2 [2008] PIERC 1 [2008]
2023-12-24
Laser-Based Estimation of the Diffusion Coefficient Profile for the Karman Turbulence Spectrum in Heated Wind Tunnel Jets Using Genetic Algorithm Computation
By
Progress In Electromagnetics Research C, Vol. 139, 167-174, 2024
Abstract
Turbulence is a longstanding problem in fluid mechanics for which experimentation remains unavoidable. In contrast to conventional experimental techniques that inevitably require the introduction of probes into the flow, a very convenient technique would be one in which there is no contact between the measuring sensors and the flow. The laser-based diagnostic technique reported in this work is described as an estimation of a large number of parameters defining the diffusion coefficient profile in the heated turbulent wind tunnel jet, which is required in the formula of the Karman turbulence spectrum for the jet under study. For this purpose, some required experiments in the jet are carried out. A laser beam is then sent perpendicular to the jet exhaust, and measurements of the probabilities of the position of the laser beam's impact on a photocell placed outside the jet are performed. Using the Markovian model, the same probabilities are calculated numerically. For these numerical results to agree with the experimental results, a numerical optimal-control strategy is applied. Due to the large number of unknown parameters searched, a genetic algorithm (GA) computation is performed. A good agreement observed between the GA results and those derived from the previously published cold-wire-anemometer data, combined with the use of the Dale-Gladstone law, proves the validity and accuracy of the laser-based genetic measurement technique.
Citation
Jacques Bernard Tissibe, Noé Richard Makon, Maurice Lamara, Elisabeth Ngo Nyobe, and Elkana Pemha, "Laser-Based Estimation of the Diffusion Coefficient Profile for the Karman Turbulence Spectrum in Heated Wind Tunnel Jets Using Genetic Algorithm Computation," Progress In Electromagnetics Research C, Vol. 139, 167-174, 2024.
doi:10.2528/PIERC23062001
References

1. Ngo Nyobe, Elisabeth and Elkana Pemha, "Shape optimization using genetic algorithms and laser beam propagation for the determination of the diffusion coefficient in a hot turbulent jet of air," Progress In Electromagnetics Research B, Vol. 4, 211-221, 2008.
doi:10.2528/PIERB08010605

2. Pemha, Elkana and Elisabeth Ngo Nyobe, "Genetic algorithm approach and experimental confirmation of a laser-based diagnostic technique for the local thermal turbulence in a hot wind tunnel jet," Progress In Electromagnetics Research B, Vol. 28, 325-350, 2011.
doi:10.2528/PIERB10123102

3. Chernov, L. A., Wave Propagation in a Random Medium, McGraw-Hill, New York, 1960.

4. Hinze, J. O., Turbulence: An Introduction to Its Mechanisms and Theory, McGraw-Hill, New York, 1976.

5. Jean Bilong, I. I., Elisabeth Ngo Nyobe, Jacques Hona, and Elkana Pemha, "Correlations of deflection angles of a laser beam in a hot turbulent jet of air: Theoretical determination and experimental measurement of the structure coefficient of refractive index fluctuations," Progress In Electromagnetics Research B, Vol. 42, 425-453, 2012.
doi:10.2528/PIERB12050903

6. Comte-Bellot, G., "Hot-wire anemometry," Annual Review of Fluid Mechanics, Vol. 8, 209-231, 1976.
doi:10.1146/annurev.fl.08.010176.001233

7. Tatarskii, V. I., The Effects of the Turbulent Atmosphere on Wave Propagation, Jerusalem: Israel Program for Scientific Translations, 1971.

8. Levine, B., Fondements Théoriques de la Radiotechnique Statistique, Editions Mir, Vol. 1, Moscou, 1973.

9. Mitchell, A. R., Computational Methods in Partial Differential Equations, John Wiley and Sons, New York, 1974.

10. Beck, J. V. and K. J. Arnold, Parameter Estimation in Engineering and Science, John Wiley and Sons, New York, 1977.

11. Morabito, Andrea Francesco, Roberta Palmeri, Valeria Ada Morabito, Antonia Rita Laganà, and Tommaso Isernia, "Single-surface phaseless characterization of antennas via hierarchically ordered optimizations," IEEE Transactions on Antennas and Propagation, Vol. 67, No. 1, 461-474, Jan. 2019.
doi:10.1109/TAP.2018.2877270

12. Holland, J. H., Adaptation in Natural and Artificial Systems, University of Michigan Press, Ann Arbor, 1975.

13. Goldberg, D. E., Genetic Algorithms in Search, Optimization and Machine Learning, Addison-Wesley, Reading, MA, 1989.

14. Deb, K., Multi-objective Optimization Using Evolutionary Algorithms, John Wiley and Sons, New York, 2001.

15. Pemha, E., B. Gay, and A. Tailland, "Measurement of the diffusion-coefficient in a heated plane airstream," Physics of Fluids A-Fluid Dynamics, Vol. 5, No. 6, 1289-1295, Jun. 1993.
doi:10.1063/1.858565

16. Gagnaire, Alain and Albert Tailland, "Interferometrical setup for the study of thermic turbulence in a plane airstream," Proceedings of SPIE - The International Society for Optical Engineering, Vol. 136, 69-73, 1978.