Vol. 126
Latest Volume
All Volumes
PIERM 127 [2024] PIERM 126 [2024] PIERM 125 [2024] PIERM 124 [2024] PIERM 123 [2024] PIERM 122 [2023] PIERM 121 [2023] PIERM 120 [2023] PIERM 119 [2023] PIERM 118 [2023] PIERM 117 [2023] PIERM 116 [2023] PIERM 115 [2023] PIERM 114 [2022] PIERM 113 [2022] PIERM 112 [2022] PIERM 111 [2022] PIERM 110 [2022] PIERM 109 [2022] PIERM 108 [2022] PIERM 107 [2022] PIERM 106 [2021] PIERM 105 [2021] PIERM 104 [2021] PIERM 103 [2021] PIERM 102 [2021] PIERM 101 [2021] PIERM 100 [2021] PIERM 99 [2021] PIERM 98 [2020] PIERM 97 [2020] PIERM 96 [2020] PIERM 95 [2020] PIERM 94 [2020] PIERM 93 [2020] PIERM 92 [2020] PIERM 91 [2020] PIERM 90 [2020] PIERM 89 [2020] PIERM 88 [2020] PIERM 87 [2019] PIERM 86 [2019] PIERM 85 [2019] PIERM 84 [2019] PIERM 83 [2019] PIERM 82 [2019] PIERM 81 [2019] PIERM 80 [2019] PIERM 79 [2019] PIERM 78 [2019] PIERM 77 [2019] PIERM 76 [2018] PIERM 75 [2018] PIERM 74 [2018] PIERM 73 [2018] PIERM 72 [2018] PIERM 71 [2018] PIERM 70 [2018] PIERM 69 [2018] PIERM 68 [2018] PIERM 67 [2018] PIERM 66 [2018] PIERM 65 [2018] PIERM 64 [2018] PIERM 63 [2018] PIERM 62 [2017] PIERM 61 [2017] PIERM 60 [2017] PIERM 59 [2017] PIERM 58 [2017] PIERM 57 [2017] PIERM 56 [2017] PIERM 55 [2017] PIERM 54 [2017] PIERM 53 [2017] PIERM 52 [2016] PIERM 51 [2016] PIERM 50 [2016] PIERM 49 [2016] PIERM 48 [2016] PIERM 47 [2016] PIERM 46 [2016] PIERM 45 [2016] PIERM 44 [2015] PIERM 43 [2015] PIERM 42 [2015] PIERM 41 [2015] PIERM 40 [2014] PIERM 39 [2014] PIERM 38 [2014] PIERM 37 [2014] PIERM 36 [2014] PIERM 35 [2014] PIERM 34 [2014] PIERM 33 [2013] PIERM 32 [2013] PIERM 31 [2013] PIERM 30 [2013] PIERM 29 [2013] PIERM 28 [2013] PIERM 27 [2012] PIERM 26 [2012] PIERM 25 [2012] PIERM 24 [2012] PIERM 23 [2012] PIERM 22 [2012] PIERM 21 [2011] PIERM 20 [2011] PIERM 19 [2011] PIERM 18 [2011] PIERM 17 [2011] PIERM 16 [2011] PIERM 14 [2010] PIERM 13 [2010] PIERM 12 [2010] PIERM 11 [2010] PIERM 10 [2009] PIERM 9 [2009] PIERM 8 [2009] PIERM 7 [2009] PIERM 6 [2009] PIERM 5 [2008] PIERM 4 [2008] PIERM 3 [2008] PIERM 2 [2008] PIERM 1 [2008]
2024-03-24
Conformal Microstrip Antennas on the Rocket Cylinder
By
Progress In Electromagnetics Research M, Vol. 126, 1-10, 2024
Abstract
This paper presents the design of conformal microstrip antennas wrapped around on a rocket cylinder. These antennas should exhibit favorable S11-parameter values within the desired radio frequency range and an omnidirectional radiation pattern. Given their external placement on rockets, the challenge in this context is to ensure heat resistance. Two types of conformal microstrip antennas are developed to address this issue: one features an 8x1 array of rectangular patch (RP) elements, and the other consists of a single long rectangular patch (LP) element. Each antenna is wrapped around the rocket cylinder, with the patch array elements tailored to match the cylinder circumference to achieve an omnidirectional radiation pattern. Both antennas operate at a resonant frequency of 2.44 GHz and are constructed using RT/duroid 5880, a flexible material with a low dielectric constant. The antennas designs are assessed through computer simulations, followed by fabrication and measurements to analyze their performance against simulation results. The results indicate that the conformal RP antenna displays an S11 value of -24.512 dB at the center frequency of 2.445 GHz featuring a 48 MHz bandwidth, while the conformal LP antenna discloses an S11 value of -16 dB at the center frequency of 2.44 GHz having a wider bandwidth of 55 MHz. Both of the conformal RP and LP antennas exhibit an omnidirectional radiation pattern with a maximum gain of 6.13 dB and 7.21 dB, respectively. Following simulation and testing results, the antennas can tolerate temperatures up to 71.8˚C during flight tests. Although temperature variations trigger slight frequency shifts, these deviations are insignificant. Finally, the measurement results agree with the simulation ones.
Citation
Anita Pascawati, Muh Fakhri, Aditya Inzani Wahdiyat, Idris Eko Putro, Sonny Dwi Harsono, Mirza Zulfikar Rahmat, Rahmat Alfi Duhri, Kandi Rahardiyanti, Herma Yudhi Irwanto, Yuyu Wahyu, Arief Rufiyanto, Budi Sulistya, Evi Nur Qomariya, Cahyaning Retno Rahayu, Rizki Fadhila Ridho, and Muhammad Reza Kahar Aziz, "Conformal Microstrip Antennas on the Rocket Cylinder," Progress In Electromagnetics Research M, Vol. 126, 1-10, 2024.
doi:10.2528/PIERM23103104
References

1. Chelstowski, Tomasz, Karol Dobrzyniewicz, Przemyslaw Kant, and Jerzy Julian Michalski, "Long range radio location system employing autonomous tracking for sounding rocket," 2018 22nd International Microwave and Radar Conference (MIKON), 400-403, 2018.

2. Jansen, I. S., R. Maximidis, M. Wijtvliet, and A. B. Smolders, "Design and evaluation of a radio-interferometry antenna for the REXUS 25 sounding rocket," 2020 14th European Conference on Antennas and Propagation (EuCAP), 1-5, 2020.

3. Sripho, Pattapong, Suriya Duangsi, and Marinda Hongthong, "Comparison of antenna for DTI rocket telemetry system," 2016 Second Asian Conference on Defence Technology (ACDT), 105-110, 2016.

4. Prades, Jérémie, Anthony Ghiotto, Eric Kerhervé, and Ke Wu, "Broadband sounding rocket antenna for dual-band telemetric and payload data transmission," IEEE Antennas and Wireless Propagation Letters, Vol. 15, 540-543, 2016.
doi:10.1109/LAWP.2015.2457338

5. Pascawati, Anita, Pavel Hazdra, Tomas Lonsky, and Muhammad Reza Kahar Aziz, "Excitation of a conducting cylinder using the theory of characteristic modes," Radioengineering, Vol. 27, No. 4, 956-960, 2018.
doi:10.13164/re.2018.0956

6. Pascawati, Anita, Kandi Rahardiyanti, Muh. Fakhri, Ahmad Riyadl, Endro Artono, Kurdianto, and Muhammad Reza Kahar Aziz, "Blade antenna 2.4 GHz for rocket applications," 2021 International Conference on Computer System, Information Technology, and Electrical Engineering (COSITE), 204-208, 2021.

7. Ribeiro Filho, Prêntice C., Alexis F. Tinoco-S., Daniel C. Nascimento, and J.C. da S. Lacava, "A telemetry antenna design for a sounding rocket competition [antenna applications corner]," IEEE Antennas and Propagation Magazine, Vol. 59, No. 3, 100-140, 2017.
doi:10.1109/MAP.2017.2686096

8. Tang, Ming-Chun, Yunlu Duan, Zhentian Wu, and Mei Li, "Flexible, conformal, endfire radiating, electrically small antennas on a conducting cylinder with a small radius," IEEE Transactions on Antennas and Propagation, Vol. 68, No. 5, 3496-3503, 2020.

9. Beaskoetxea, Unai, Juan Carlos Iriarte, Iñigo Ederra, Itziar Maestrojuan, and Marisole Melara, "Design of multiband conformal antenna for sounding rocket," 2020 14th European Conference on Antennas and Propagation (EuCAP), 1-3, 2020.

10. Bhattacharya, Dhrubajyoti, Bratin Ghosh, and Kamal Sarabandi, "Evaluation of efficient closed-form Green's function in a cylindrically stratified medium," IEEE Transactions on Antennas and Propagation, Vol. 65, No. 3, 1505-1510, 2017.

11. Bhattacharya, Dhrubajyoti, Bratin Ghosh, Pranab Kumar Goswami, and Kamal Sarabandi, "Evaluation of efficient Green's functions for spherically stratified media," IEEE Transactions on Antennas and Propagation, Vol. 66, No. 3, 1613-1618, 2018.

12. Ghosh, Bratin, Kushan Chakraborty, Golak Santra, and Kamal Sarabandi, "Loop excitation of a conical horn," IEEE Transactions on Antennas and Propagation, Vol. 66, No. 6, 2727-2740, 2018.

13. Ghosh, Bratin, S. K. Moinul Haque, and Prasanta Halder, "Analysis of arbitrary multiple-loop antennas around a conducting cone, with rotational symmetry," IET Microwaves, Antennas & Propagation, Vol. 7, No. 2, 111-122, 2013.

14. Halder, Prasanta, Bratin Ghosh, S. K. Moinul Haque, and Kamal Sarabandi, "Loop antenna over a conducting cone with a spherical cap," IET Microwaves, Antennas & Propagation, Vol. 13, No. 14, 2559-2568, 2019.

15. Jaglan, Naveen, Samir Dev Gupta, and Mohammad S. Sharawi, "18 element massive MIMO/diversity 5G smartphones antenna design for sub-6 GHz LTE bands 42/43 applications," IEEE Open Journal of Antennas and Propagation, Vol. 2, 533-545, 2021.

16. Jaglan, Naveen, Samir Dev Gupta, Binod Kumar Kanaujia, and Mohammad S. Sharawi, "10 element sub-6-GHz multi-band double-T based MIMO antenna system for 5G smartphones," IEEE Access, Vol. 9, 118662-118672, 2021.

17. Thakur, Vishakha, Naveen Jaglan, and Samir Dev Gupta, "Side edge printed eight-element compact MIMO antenna array for 5G smartphone applications," Journal of Electromagnetic Waves and Applications, Vol. 36, No. 12, 1685-1701, 2022.

18. Pascawati, Anita, M. Fakhri, Mirza Zulfikar Rahmat, Idris Eko Putro, Rahmat Alfi Duhri, Sonny Dwi Harsono, Herma Yudhi Irwanto, Yuyu Wahyu, Budi Sulistya, Arief Rufiyanto, and Muhammad Reza Kahar Aziz, "Conformal microstrip rectangular patch array 8 × 1 antenna for rocket," AIP Conference Proceedings, Vol. 2941, No. 1, 020059, 2023.
doi:10.1063/5.0181673

19. Balanis, Constantine A., Antenna Theory: Analysis and Design, John Wiley & Sons, 2016.

20. Munson, R., "Conformal microstrip antennas and microstrip phased arrays," IEEE Transactions on Antennas and Propagation, Vol. 22, No. 1, 74-78, 1974.

21. Harrington, Roger F., Time-Harmonic Electromagnetic Fields, IEEE Press, 2001.
doi:10.1109/9780470546710

22. Tchafa, F. Mbanya and H. Huang, "Microstrip patch antenna for simultaneous strain and temperature sensing," Smart Materials and Structures, Vol. 27, No. 6, 065019, May 2018.

23. Narasagond, Sunita, C. Jayanth, and Sandeep Vedagarbham, "A comparison between inset feed and proximity feed techniques for MSA," 2018 3rd IEEE International Conference on Recent Trends in Electronics, Information & Communication Technology (RTEICT), 228-231, 2018.

24. Patil, Sharanu, M. Ar, C. Sudhendra, R. Ts, and D. Biswas, "Design and implementation of a conformal omnidirectional microstrip antenna array on cylindrical surface," International Journal of Advances in Electronics and Computer Science, 2393-2835, 2015.

25. Song, Lingnan and Yahya Rahmat-Samii, "A systematic investigation of rectangular patch antenna bending effects for wearable applications," IEEE Transactions on Antennas and Propagation, Vol. 66, No. 5, 2219-2228, 2018.

26. Yadava, R. L., Antennas and Wave Propagation, PHI Learning Private Limited, 2022.

27. Rogers Corporation "RT/duroid® 5870 and 5880 high frequency laminates," available: https://www.rogerscorp.com/-/media/project/rogerscorp/documents/advanced-electronicssolutions/english/data-sheets/rt-duroid-5880lz-high-frequency-laminates.pdf.

28. Putro, I. E., "Rocket Design," Tech. Rep. TD-11/GL1/PTR/VIII/2021, National Institute of Aeronautics and Space (LAPAN), 2021.

29. Duhri, R. A., "Perhitungan CFD Nosecone RX-200," Tech. Rep. TN-01/ES1.1.2/ROKET/VIII/2021, National Institute of Aeronautics and Space (LAPAN), 2021.