Vol. 87
Latest Volume
All Volumes
PIER 179 [2024] PIER 178 [2023] PIER 177 [2023] PIER 176 [2023] PIER 175 [2022] PIER 174 [2022] PIER 173 [2022] PIER 172 [2021] PIER 171 [2021] PIER 170 [2021] PIER 169 [2020] PIER 168 [2020] PIER 167 [2020] PIER 166 [2019] PIER 165 [2019] PIER 164 [2019] PIER 163 [2018] PIER 162 [2018] PIER 161 [2018] PIER 160 [2017] PIER 159 [2017] PIER 158 [2017] PIER 157 [2016] PIER 156 [2016] PIER 155 [2016] PIER 154 [2015] PIER 153 [2015] PIER 152 [2015] PIER 151 [2015] PIER 150 [2015] PIER 149 [2014] PIER 148 [2014] PIER 147 [2014] PIER 146 [2014] PIER 145 [2014] PIER 144 [2014] PIER 143 [2013] PIER 142 [2013] PIER 141 [2013] PIER 140 [2013] PIER 139 [2013] PIER 138 [2013] PIER 137 [2013] PIER 136 [2013] PIER 135 [2013] PIER 134 [2013] PIER 133 [2013] PIER 132 [2012] PIER 131 [2012] PIER 130 [2012] PIER 129 [2012] PIER 128 [2012] PIER 127 [2012] PIER 126 [2012] PIER 125 [2012] PIER 124 [2012] PIER 123 [2012] PIER 122 [2012] PIER 121 [2011] PIER 120 [2011] PIER 119 [2011] PIER 118 [2011] PIER 117 [2011] PIER 116 [2011] PIER 115 [2011] PIER 114 [2011] PIER 113 [2011] PIER 112 [2011] PIER 111 [2011] PIER 110 [2010] PIER 109 [2010] PIER 108 [2010] PIER 107 [2010] PIER 106 [2010] PIER 105 [2010] PIER 104 [2010] PIER 103 [2010] PIER 102 [2010] PIER 101 [2010] PIER 100 [2010] PIER 99 [2009] PIER 98 [2009] PIER 97 [2009] PIER 96 [2009] PIER 95 [2009] PIER 94 [2009] PIER 93 [2009] PIER 92 [2009] PIER 91 [2009] PIER 90 [2009] PIER 89 [2009] PIER 88 [2008] PIER 87 [2008] PIER 86 [2008] PIER 85 [2008] PIER 84 [2008] PIER 83 [2008] PIER 82 [2008] PIER 81 [2008] PIER 80 [2008] PIER 79 [2008] PIER 78 [2008] PIER 77 [2007] PIER 76 [2007] PIER 75 [2007] PIER 74 [2007] PIER 73 [2007] PIER 72 [2007] PIER 71 [2007] PIER 70 [2007] PIER 69 [2007] PIER 68 [2007] PIER 67 [2007] PIER 66 [2006] PIER 65 [2006] PIER 64 [2006] PIER 63 [2006] PIER 62 [2006] PIER 61 [2006] PIER 60 [2006] PIER 59 [2006] PIER 58 [2006] PIER 57 [2006] PIER 56 [2006] PIER 55 [2005] PIER 54 [2005] PIER 53 [2005] PIER 52 [2005] PIER 51 [2005] PIER 50 [2005] PIER 49 [2004] PIER 48 [2004] PIER 47 [2004] PIER 46 [2004] PIER 45 [2004] PIER 44 [2004] PIER 43 [2003] PIER 42 [2003] PIER 41 [2003] PIER 40 [2003] PIER 39 [2003] PIER 38 [2002] PIER 37 [2002] PIER 36 [2002] PIER 35 [2002] PIER 34 [2001] PIER 33 [2001] PIER 32 [2001] PIER 31 [2001] PIER 30 [2001] PIER 29 [2000] PIER 28 [2000] PIER 27 [2000] PIER 26 [2000] PIER 25 [2000] PIER 24 [1999] PIER 23 [1999] PIER 22 [1999] PIER 21 [1999] PIER 20 [1998] PIER 19 [1998] PIER 18 [1998] PIER 17 [1997] PIER 16 [1997] PIER 15 [1997] PIER 14 [1996] PIER 13 [1996] PIER 12 [1996] PIER 11 [1995] PIER 10 [1995] PIER 09 [1994] PIER 08 [1994] PIER 07 [1993] PIER 06 [1992] PIER 05 [1991] PIER 04 [1991] PIER 03 [1990] PIER 02 [1990] PIER 01 [1989]
2008-11-10
Analysis of Cylindrically Conformal Microstrip Structures Using an Iterative Method
By
Progress In Electromagnetics Research, Vol. 87, 215-231, 2008
Abstract
An efficient iterative method is presented for the fast analysis of cylindrically conformal microstrip structures. Based on the transmission line modeling (TLM) method and the fast modal transform (FMT) theory, this technique accelerates the process of the calculation by introducing the concept of the transverse electromagnetic waves instead of the transverse fields considered in the traditional algorithm. Within cylindrically stratified media, the transverse electromagnetic waves are represented by the hybrid modal basis functions. Ultimately, the specific form of the modal admittance and the spectral reflection matrix are deduced. Further more?the surface electric fields and electric currents of the cylindrically conformal microstrip antenna fed by means of a microstripline are calculated via the iterative process. On this basis, the input impedance of the antenna can also be obtained. And the results gained by utilizing iterative approach are compared with those from the published references to demonstrate the accuracy or efficiency of this method.
Citation
Yuanyuan Wang, Yong-Jun Xie, and He Feng, "Analysis of Cylindrically Conformal Microstrip Structures Using an Iterative Method," Progress In Electromagnetics Research, Vol. 87, 215-231, 2008.
doi:10.2528/PIER08102402
References

1. Habashy, T. M., S. M. Ali, and J. A. Kong, "Input impedance and radiation pattern of cylindrical-rectangular and wraparound microstrip antennas," IEEE Trans. Antennas Propagat., Vol. 38, No. 5, 722-731, May 1990.
doi:10.1109/8.53500

2. Cooray, F. R. and J. S. Kot, "Analysis of radiation from a cylindrical-rectangular microstrip patch antenna loaded with a superstrate and an air gap using the electric surface current mode," Progress In Electromagnetics Research, Vol. 67, 135-152, 2007.
doi:10.2528/PIER06080304

3. Wong, K. L., Y. H. Liu, and C. Y. Huang, "Generalized transmission line model for cylindrical-rectangular microstrip antenna," Microwave and Optical Technology Letters, Vol. 7, No. 16, 729-732, Jan. 1994.
doi:10.1002/mop.4650071602

4. Luk, K. M., K. F. Lee, and J. S. Dahele, "Analysis of the cylindrical-rectangular mictrostrip patch antenna," IEEE Trans. Antennas Propagat., Vol. 37, No. 2, 143-147, Feb. 1989.
doi:10.1109/8.18699

5. Franklin, F. C., S. B. A. Fonseca, J. M. Soares, and A. J. Giarola, "Analysis of microstrip antennas on circular-cylindrical substrates with a dielectric overlay," IEEE Trans. Antennas Propagat., Vol. 39, No. 9, 1398-1403, Sept. 1991.
doi:10.1109/8.99050

6. Svezhentsev, A. Y., "Some far field features of cylindrical microstrip antenna on an electrically small cylinder," Progress In Electromagnetics Research B, Vol. 7, 223-244, 2008.
doi:10.2528/PIERB08032201

7. Erturk, V. B. and R. G. Rojas, "Efficient analysis of input impedance and mutual coupling of microstrip antennas mounted on large coated cylinders," IEEE Trans. Antennas Propagat., Vol. 51, No. 4, 739-749, Apr. 2003.
doi:10.1109/TAP.2003.811060

8. Harrington, R. F., Field Computation by Moment Methods, Macmillan, New York, 1968.

9. Tokgoz, C. and G. Dural, "Closed-form Green's functions for cylindrically stratified media," IEEE Trans. Microwave Theory and Tech., Vol. 48, No. 1, 40-49, Jan. 2000.
doi:10.1109/22.817470

10. Sun, J., C.-F.Wang, L.-W. Li, and M. -S. Leong, "Mixed potential spatial domain Green's functions in fast computational form for cylindrically stratified media," Progress In Electromagnetics Research, Vol. 45, 181-199, 2004.
doi:10.2528/PIER03071501

11. Acar, R. C. and G. Dual, "Mutual coupling of printed elements on a cylindrically layered structure using closed-form Green's functions," Progress In Electromagnetics Research, Vol. 78, 103-127, 2008.
doi:10.2528/PIER07082101

12. Sun, J., C.-F. Wang, L.-W. Li, and M.-S. Leong, "A complete set of spatial-domain dyadic Green's function components for cylindrically stratified media in fast computational form," Journal of Electromagnetic Waves and Applications, Vol. 16, No. 11, 1491-1509, 2002.
doi:10.1163/156939302X00949

13. Li, L.-W., S. B. Yeap, M.-S. Leong, T.-S. Yeo, and P.-S. Kooi, "Eigenfunctional representation of dyadic Green's functions in cylindrically multilayered gyroelectric chiral media," Progress In Electromagnetics Research, Vol. 42, 143-171, 2003.
doi:10.2528/PIER03011701

14. Li, L.-W., M.-S. Leong, T.-S. Yeo, and P.-S. Kooi, "Electromagnetic dyadic Green's functions in spectral domain for multilayered cylinders," Journal of Electromagnetic Waves and Applications, Vol. 11, No. 7, 961-986, July 2000.

15. Silvester, P. P. and R. L. Ferrari, Finite Elements for Engineering, Cambridge University Press, Cambridge, U.K., 1990.

16. Titaouine, M., A. G. Neto, H. Baudrand, and F. Djahli, "WCIP method applied to active frequency selective surfaces," Journal of Microwave and Optoelectronics, Vol. 6, No. 1, 1-16, June 2007.

17. Hajiaoui, E. A., H. Trabeisi, H. Zairi, A. Gharsallah, and H. Baudrand, "Analysis of multilayer substrates by multilayer contribution of wave concept itrative process," Microwave and Optical Technology Letters, Vol. 49, No. 6, 1439-1445, June 2007.
doi:10.1002/mop.22406

18. Mami, A., H. Zairi, A. Gharsallah, and H. Baudrand, "Analysis of microstrip spiral inductor by using iterative method," Microwave and Optical Technology Letters, Vol. 35, No. 4, 302-306, Nov. 2002.
doi:10.1002/mop.10590

19. Raveu, N., T. P. Vuong, I. Terrasse, G.-P. Piau, and H. Baudrand, "Near fields evaluated with the wave concept iterative procedure method for an E-polarisation plane wave scattered by cylindrical strips," Microwave and Optical Technology Letters, Vol. 38, No. 5, 403-406, Sept. 2003.
doi:10.1002/mop.11074

20. Bdour, T., N. Ammar, T. Aguili, and H. Baudrand, "Modeling of wave penetration through cylindrical aperture using an iterative method based on transverse wave concept," IEEE Microwave Conference KJMW, 45-48, 2007.

21. Raveu, N., T. P. Vuong, I. Terrasse, G.-P. Piau, G. Fontgalland, and H. Baudrand, "Wave concept iterative procedure applied to cylinders," IEE Proceedings, Microwave, Antennas and Propagation, Vol. 151, No. 5, 409-416, Oct. 2004.
doi:10.1049/ip-map:20040763

22. Ammar, N., T. Bdour, T. Aguili, and H. Baudrand, "Investigation of electromagnetic scattering by arbitrarily shaped structures using the wave concept iterative process," Journal of Microwaves, Optoelectronics and Electromagnetic Applications, Vol. 7, No. 1, 26-43, June 2008.

23. Bedira, R., A. Gharsallah, L. Desclos, A. Gharbiand, and H. Baudrand, "The wave concept iterative process: Scattering of a conducting target coated by a thin dielectric layer," AP-Symposium, Vol. 2, 98-101, 2002.

24. Harrington, R. F., Time-harmonic Electromagnetic Fields, McGraw-Hill, New York, 1961.