Vol. 129
Latest Volume
All Volumes
PIER 179 [2024] PIER 178 [2023] PIER 177 [2023] PIER 176 [2023] PIER 175 [2022] PIER 174 [2022] PIER 173 [2022] PIER 172 [2021] PIER 171 [2021] PIER 170 [2021] PIER 169 [2020] PIER 168 [2020] PIER 167 [2020] PIER 166 [2019] PIER 165 [2019] PIER 164 [2019] PIER 163 [2018] PIER 162 [2018] PIER 161 [2018] PIER 160 [2017] PIER 159 [2017] PIER 158 [2017] PIER 157 [2016] PIER 156 [2016] PIER 155 [2016] PIER 154 [2015] PIER 153 [2015] PIER 152 [2015] PIER 151 [2015] PIER 150 [2015] PIER 149 [2014] PIER 148 [2014] PIER 147 [2014] PIER 146 [2014] PIER 145 [2014] PIER 144 [2014] PIER 143 [2013] PIER 142 [2013] PIER 141 [2013] PIER 140 [2013] PIER 139 [2013] PIER 138 [2013] PIER 137 [2013] PIER 136 [2013] PIER 135 [2013] PIER 134 [2013] PIER 133 [2013] PIER 132 [2012] PIER 131 [2012] PIER 130 [2012] PIER 129 [2012] PIER 128 [2012] PIER 127 [2012] PIER 126 [2012] PIER 125 [2012] PIER 124 [2012] PIER 123 [2012] PIER 122 [2012] PIER 121 [2011] PIER 120 [2011] PIER 119 [2011] PIER 118 [2011] PIER 117 [2011] PIER 116 [2011] PIER 115 [2011] PIER 114 [2011] PIER 113 [2011] PIER 112 [2011] PIER 111 [2011] PIER 110 [2010] PIER 109 [2010] PIER 108 [2010] PIER 107 [2010] PIER 106 [2010] PIER 105 [2010] PIER 104 [2010] PIER 103 [2010] PIER 102 [2010] PIER 101 [2010] PIER 100 [2010] PIER 99 [2009] PIER 98 [2009] PIER 97 [2009] PIER 96 [2009] PIER 95 [2009] PIER 94 [2009] PIER 93 [2009] PIER 92 [2009] PIER 91 [2009] PIER 90 [2009] PIER 89 [2009] PIER 88 [2008] PIER 87 [2008] PIER 86 [2008] PIER 85 [2008] PIER 84 [2008] PIER 83 [2008] PIER 82 [2008] PIER 81 [2008] PIER 80 [2008] PIER 79 [2008] PIER 78 [2008] PIER 77 [2007] PIER 76 [2007] PIER 75 [2007] PIER 74 [2007] PIER 73 [2007] PIER 72 [2007] PIER 71 [2007] PIER 70 [2007] PIER 69 [2007] PIER 68 [2007] PIER 67 [2007] PIER 66 [2006] PIER 65 [2006] PIER 64 [2006] PIER 63 [2006] PIER 62 [2006] PIER 61 [2006] PIER 60 [2006] PIER 59 [2006] PIER 58 [2006] PIER 57 [2006] PIER 56 [2006] PIER 55 [2005] PIER 54 [2005] PIER 53 [2005] PIER 52 [2005] PIER 51 [2005] PIER 50 [2005] PIER 49 [2004] PIER 48 [2004] PIER 47 [2004] PIER 46 [2004] PIER 45 [2004] PIER 44 [2004] PIER 43 [2003] PIER 42 [2003] PIER 41 [2003] PIER 40 [2003] PIER 39 [2003] PIER 38 [2002] PIER 37 [2002] PIER 36 [2002] PIER 35 [2002] PIER 34 [2001] PIER 33 [2001] PIER 32 [2001] PIER 31 [2001] PIER 30 [2001] PIER 29 [2000] PIER 28 [2000] PIER 27 [2000] PIER 26 [2000] PIER 25 [2000] PIER 24 [1999] PIER 23 [1999] PIER 22 [1999] PIER 21 [1999] PIER 20 [1998] PIER 19 [1998] PIER 18 [1998] PIER 17 [1997] PIER 16 [1997] PIER 15 [1997] PIER 14 [1996] PIER 13 [1996] PIER 12 [1996] PIER 11 [1995] PIER 10 [1995] PIER 09 [1994] PIER 08 [1994] PIER 07 [1993] PIER 06 [1992] PIER 05 [1991] PIER 04 [1991] PIER 03 [1990] PIER 02 [1990] PIER 01 [1989]
2012-06-13
Analysis of Electromagnetic Plane Wave Scattering from 2-d Periodic Arrangements of Posts
By
Progress In Electromagnetics Research, Vol. 129, 69-90, 2012
Abstract
In the paper, the analysis of electromagnetic wave scattering from frequency selective surface is presented. The surface is composed of periodically arranged posts. The multimodal scattering matrix of such structure is derived and the transmission and reflection characteristic for the structure with arbitrary plane wave illumination are calculated. The exact full-wave theory based on the mode-matching method is applied to develop an efficient theory to analyze such structures. The validity and accuracy of the approach are verified by comparing the results with those obtained from alternative methods.
Citation
Adam Kusiek, Rafal Lech, and Jerzy Mazur, "Analysis of Electromagnetic Plane Wave Scattering from 2-d Periodic Arrangements of Posts," Progress In Electromagnetics Research, Vol. 129, 69-90, 2012.
doi:10.2528/PIER12041302
References

1. Wu, T. K., Frequency Selective Surfaces and Grid Array, Wiley, New York, 1995.

2. Munk, B. A., "Frequency Selective Surfaces: Theory and Design," Wiley, New York, 2000.

3. Khromova, I., I. Ederra, R. Gonzalo, and B. P. de Hon, "Symmet-rical pyramidal horn antennas based on EBG structures," Progress In Electromagnetics Research B, Vol. 29, 1-22, 2011.
doi:10.2528/PIERB11020403

4. Huang, M.-J., M.-Y. Lv, and Z. Wu, "Transmission upper bound of planar single-layer frequency selective surface," Progress In Electromagnetics Research B, Vol. 23, 15-38, 2010.
doi:10.2528/PIERB10042701

5. Xie, H.-H., Y.-C. Jiao, L.-N. Chen, and F.-S. Zhang, "An effective analysis method for EBG reducing patch antenna coupling," Progress In Electromagnetics Research Letters, Vol. 21, 187-193, 2011.

6. Veysi, M. and M. Shafaee, "EBG frequency response tuning using an adjustable air-gap," Progress In Electromagnetics Research Letters, Vol. 19, 31-39, 2010.

7. Xie, H.-H., Y.-C. Jiao, L.-N. Chen, and F.-S. Zhang, "Omnidirectional horizontally polarized antenna with EBG cavity for gain enhancement," Progress In Electromagnetics Research Letters, Vol. 15, 79-87, 2010.
doi:10.2528/PIERL10042207

8. Ren, L.-S., Y.-C. Jiao, J.-J. Zhao, and F. Li, "RCS reduction for a FSS-backed reflectarray using a ring element," Progress In Electromagnetics Research Letters, Vol. 26, 115-123, 2011.
doi:10.2528/PIERL11071201

9. Kong, Y. W. and S. T. Chew, "EBG-based dual mode resonator filter," IEEE Microwave and Wireless Components Letters, Vol. 14, No. 3, 124-126, Mar. 2004.
doi:10.1109/LMWC.2003.822570

10. Coccioli, R., F.-R. Yang, K.-P. Ma, and T. Itoh, "Aperture-coupled patch antenna on UC-PBG substrate," IEEE Transactions on Microwave Theory and Techniques, Vol. 47, No. 11, 2123-2130, Nov. 1999.
doi:10.1109/22.798008

11. Jandieri, V., K. Yasumoto, and Y.-K. Cho, "Rigorous analysis of electromagnetic scattering by cylindrical EBG structures," Progress In Electromagnetics Research, Vol. 121, 317-342, 2011.
doi:10.2528/PIER11090903

12. Kim, S.-H., T. T. Nguyen, and J.-H. Jang., "Reflection characteristics of 1-D EBG ground plane and its application to a planar dipole antenna," Progress In Electromagnetics Research, Vol. 120, 51-66, 2011.

13. Wang, X., M. Zhang, and S.-J. Wang, "Practicability analysis and application of PBG structures on cylindrical conformal microstrip antenna and array," Progress In Electromagnetics Research, Vol. 115, 495-507, 2011.

14. Lin, S. Y. and J. G. Fleming, "A three-dimensional optical photonic crystal," J. Lightwave Technol., Vol. 17, 1944-1947, 1999.
doi:10.1109/50.802977

15. Kushta, T. and K. Yasumoto, "Electromagnetic scattering from periodic arrays of two circular cylinders per unit cell," Progress In Electromagnetics Research, Vol. 29, 69-85, 2000.
doi:10.2528/PIER99103101

16. Pelosi, G., A. Cocchi, and A. Monorchio, "A hybrid FEM-based procedure for the scattering from photonic crystals illuminated by a Gaussian beam," IEEE Transactions on Antennas and Propagation, Vol. 48, 973-980, Jun. 2000.
doi:10.1109/8.865232

17. Yang, H. Y. D., "Finite difference analysis of 2-D photonic crystals," IEEE Transactions on Microwave Theory and Techniques, Vol. 44, 2688-2695, Dec. 1996.
doi:10.1109/22.554631

18. Frezza, F., L. Pajewski, and G. Schettini, "Characterization and design of two-dimensional electromagnetic band-gap structures by use of a full-wave method for diffraction gratings," IEEE Transactions on Microwave Theory and Techniques, Vol. 51, No. 3, 941-951, Mar. 2003.
doi:10.1109/TMTT.2003.808696

19. Wasylkiwskyj, W., "On the transmission coeffcient of an infinite grating of parallel perfectly conducting circular cylinders," IEEE Transactions on Antennas and Propagation, Vol. 19, No. 5, 704-708, Sep. 1971.
doi:10.1109/TAP.1971.1140011

20. Saleh, A. A. M., "An adjustable quasi-optical bandpass filter --Part I: Theory and design formulas," IEEE Transactions on Microwave Theory and Techniques, Vol. 22, No. 7, 728-734, Jul. 1974.
doi:10.1109/TMTT.1974.1128319

21. Yasumoto, K., H. Toyama, and T. Kushta, "S-matrix solution of electromagnetic scattering from periodic arrays of metallic cylinders with arbitrary cross section," IEEE Antennas and Wireless Propagation Letters, Vol. 3, 41-44, 2004.

22. Yasumoto, K., H. Toyama, and T. Kushta, "Accurate analysis of two-dimensional electromagnetic scattering from multilayered periodic arrays of circular cylinders using lattice sums technique," IEEE Transactions on Antennas and Propagation, Vol. 52, No. 10, 2603-2611, Oct. 2004.
doi:10.1109/TAP.2004.834440

23. Tsang, L., J. A. Kong, and K.-H. Ding, "Scattering of Electromagnetic Waves: Theories and Applications," John Wiley and Sons, INC., New York, 2000.

24. Yasumoto, K. and K. Yoshitomi, "Effcient calculation of lattice sums for freespace periodic Green function," IEEE Transactions on Antennas and Propagation, Vol. 47, No. 6, 1050-1055, Jun. 1999.
doi:10.1109/8.777130

25. Lech, R. and J. Mazur, "Electromagnetic curtain effect and tunneling properties of multilayered periodic structures," IEEE Antennas and Wireless Propagation Letters, Vol. 7, 201-205, 2008.
doi:10.1109/LAWP.2008.919355

26. Kusiek, A. and J. Mazur, "Analysis of scattering from arbitrary configuration of cylindrical objects using hybrid finite-difference mode-matching method," Progress In Electromagnetics Research, Vol. 97, 105-127, 2009.
doi:10.2528/PIER09072804

27. Kusiek, A. and J. Mazur, "Application of hybrid finite-difference mode-matching method to analysis of structures loaded with axially-symmetrical posts," Microwave and Optical Technology Letters, Vol. 53, No. 1, 189-194, Jan. 2011.
doi:10.1002/mop.25644

28. Lech, R. and J. Mazur, "Analysis of circular cavity with cylindrical objects," IEEE Transactions on Microwave Theory and Techniques, Vol. 55, No. 10, 2115-2123, Oct. 2007.
doi:10.1109/TMTT.2007.906486

29. Yasumoto, K., Electromagnetic Theory and Applications for Photonic Crystals, CRC Press, New-York, 2005.
doi:10.1201/9781420026627

30. Stutzman, W. and Polarization in Electromagnetic Systems, Artech House, 1993.

31. Mrozowski, M. and J. Mazur, "General analysis of a parallel-plate waveguide inhomogeneously filled with gyromagnetic media," IEEE Transactions on Microwave Theory and Techniques, Vol. 34, No. 4, 388-395, Apr. 1986.
doi:10.1109/TMTT.1986.1133358