Vol. 154
Latest Volume
All Volumes
PIER 179 [2024] PIER 178 [2023] PIER 177 [2023] PIER 176 [2023] PIER 175 [2022] PIER 174 [2022] PIER 173 [2022] PIER 172 [2021] PIER 171 [2021] PIER 170 [2021] PIER 169 [2020] PIER 168 [2020] PIER 167 [2020] PIER 166 [2019] PIER 165 [2019] PIER 164 [2019] PIER 163 [2018] PIER 162 [2018] PIER 161 [2018] PIER 160 [2017] PIER 159 [2017] PIER 158 [2017] PIER 157 [2016] PIER 156 [2016] PIER 155 [2016] PIER 154 [2015] PIER 153 [2015] PIER 152 [2015] PIER 151 [2015] PIER 150 [2015] PIER 149 [2014] PIER 148 [2014] PIER 147 [2014] PIER 146 [2014] PIER 145 [2014] PIER 144 [2014] PIER 143 [2013] PIER 142 [2013] PIER 141 [2013] PIER 140 [2013] PIER 139 [2013] PIER 138 [2013] PIER 137 [2013] PIER 136 [2013] PIER 135 [2013] PIER 134 [2013] PIER 133 [2013] PIER 132 [2012] PIER 131 [2012] PIER 130 [2012] PIER 129 [2012] PIER 128 [2012] PIER 127 [2012] PIER 126 [2012] PIER 125 [2012] PIER 124 [2012] PIER 123 [2012] PIER 122 [2012] PIER 121 [2011] PIER 120 [2011] PIER 119 [2011] PIER 118 [2011] PIER 117 [2011] PIER 116 [2011] PIER 115 [2011] PIER 114 [2011] PIER 113 [2011] PIER 112 [2011] PIER 111 [2011] PIER 110 [2010] PIER 109 [2010] PIER 108 [2010] PIER 107 [2010] PIER 106 [2010] PIER 105 [2010] PIER 104 [2010] PIER 103 [2010] PIER 102 [2010] PIER 101 [2010] PIER 100 [2010] PIER 99 [2009] PIER 98 [2009] PIER 97 [2009] PIER 96 [2009] PIER 95 [2009] PIER 94 [2009] PIER 93 [2009] PIER 92 [2009] PIER 91 [2009] PIER 90 [2009] PIER 89 [2009] PIER 88 [2008] PIER 87 [2008] PIER 86 [2008] PIER 85 [2008] PIER 84 [2008] PIER 83 [2008] PIER 82 [2008] PIER 81 [2008] PIER 80 [2008] PIER 79 [2008] PIER 78 [2008] PIER 77 [2007] PIER 76 [2007] PIER 75 [2007] PIER 74 [2007] PIER 73 [2007] PIER 72 [2007] PIER 71 [2007] PIER 70 [2007] PIER 69 [2007] PIER 68 [2007] PIER 67 [2007] PIER 66 [2006] PIER 65 [2006] PIER 64 [2006] PIER 63 [2006] PIER 62 [2006] PIER 61 [2006] PIER 60 [2006] PIER 59 [2006] PIER 58 [2006] PIER 57 [2006] PIER 56 [2006] PIER 55 [2005] PIER 54 [2005] PIER 53 [2005] PIER 52 [2005] PIER 51 [2005] PIER 50 [2005] PIER 49 [2004] PIER 48 [2004] PIER 47 [2004] PIER 46 [2004] PIER 45 [2004] PIER 44 [2004] PIER 43 [2003] PIER 42 [2003] PIER 41 [2003] PIER 40 [2003] PIER 39 [2003] PIER 38 [2002] PIER 37 [2002] PIER 36 [2002] PIER 35 [2002] PIER 34 [2001] PIER 33 [2001] PIER 32 [2001] PIER 31 [2001] PIER 30 [2001] PIER 29 [2000] PIER 28 [2000] PIER 27 [2000] PIER 26 [2000] PIER 25 [2000] PIER 24 [1999] PIER 23 [1999] PIER 22 [1999] PIER 21 [1999] PIER 20 [1998] PIER 19 [1998] PIER 18 [1998] PIER 17 [1997] PIER 16 [1997] PIER 15 [1997] PIER 14 [1996] PIER 13 [1996] PIER 12 [1996] PIER 11 [1995] PIER 10 [1995] PIER 09 [1994] PIER 08 [1994] PIER 07 [1993] PIER 06 [1992] PIER 05 [1991] PIER 04 [1991] PIER 03 [1990] PIER 02 [1990] PIER 01 [1989]
2015-12-31
Multi-Mode Broadband Power Transfer through a Wire Medium Slab (Invited Paper)
By
Progress In Electromagnetics Research, Vol. 154, 171-180, 2015
Abstract
It is known that slabs of wire media - dense arrays of thin conducting wires - can transport electromagnetic energy of evanescent plane waves over the slab thickness. This phenomenon was successfully used in superlenses and endoscopes. However, in the known configurations the effective energy transfer takes place only at the Fabry-Perot (thickness) resonances of the slab, making broadband power transfer impossible. In this paper we experimentally demonstrate that power transfer by a wire medium slab can be very broadband, whereas the Fabry-Perot resonances are damped, provided that the wires of the wire medium slab extend into the power-emitting body. As a testbed system we have used two rectangular waveguides and demonstrated that a properly designed and positioned wire medium slab transfers modes of any polarization from the input to the output waveguides. This study is relevant to emerging applications where broadband transport of reactive-field energy is required, especially in enhancing and controlling radiative heat flows in thermophotovoltaic systems.
Citation
Dmytro Vovchuk, Sergei Kosulnikov, Igor Nefedov, Sergei Tretyakov, and Constantin Rufovich Simovski, "Multi-Mode Broadband Power Transfer through a Wire Medium Slab (Invited Paper)," Progress In Electromagnetics Research, Vol. 154, 171-180, 2015.
doi:10.2528/PIER15111908
References

1. Simovski, C. R., P. A. Belov, A. V. Atrashchenko, and Yu. S. Kivshar, "Wire metamaterials: Physics and applications," Adv. Mater., Vol. 24, 4229-4248, 2012.
doi:10.1002/adma.201200931

2. Belov, P. A., R. Marques, S. I. Maslovski, I. S. Nefedov, M. Silverinha, C. R. Simovski, and S. A. Tretyakov, "Strong spatial dispersion in wire media in the very large wavelength limit," Phys. Rev. B, Vol. 67, 113103(1-4), 2003.
doi:10.1103/PhysRevB.67.113103

3. Nefedov, I. S. and A. J. Viitanen, "Wire media," Metamaterial Handbook. Vol. 1: Theory and Phenomena of Metamaterials, Chapter 15-1, CRC Press, Boca Raton, 2009.

4. Simovski, C. R. and P. A. Belov, "Low-frequency spatial dispersion in wire media," Phys. Rev. E, Vol. 70, 046616(1-8), 2004.

5. Belov, P. A., C. R. Simovski, and P. Ikonen, "Canalization of subwavelength images by electromagnetic crystals," Phys. Rev. B, Vol. 71, 193105(1-4), 2005.
doi:10.1103/PhysRevB.71.193105

6. Belov, P. A., Y. Zhao, S. Sudhakaran, A. Alomainy, and Y. Hao, "Experimental study of the subwavelength imaging by a wire medium slab," Appl. Phys. Lett., Vol. 89, 262109, 2006.
doi:10.1063/1.2424557

7. Belov, P. A., Y. Zhao, S. Tse, P. Ikonen, M. G. Silveirinha, C. R. Simovski, S. A. Tretyakov, Y. Hao, and C. Parini, "Transmission of images with subwavelength resolution to distances of several wavelengths in the microwave range," Phys. Rev. B, Vol. 77, 193108, 2008.
doi:10.1103/PhysRevB.77.193108

8. Shvets, G., S. Trendafilov, J. B. Pendry, and A. Sarychev, "Guiding, focusing, and sensing on the subwavelength scale using metallic wire arrays," Phys. Rev. Lett., Vol. 99, 053903, 2007.
doi:10.1103/PhysRevLett.99.053903

9. Zhao, Y., G. Palicaras, P. A. Belov, R. F. Dubrovka, C. R. Simovski, Y. Hao, and C. G. Parini, "Magnification of subwavelength field distributions using a tapered array of metallic wires with planar interfaces and an embedded dielectric phase compensator," New J. Phys., Vol. 12, 103045, 2010.
doi:10.1088/1367-2630/12/10/103045

10. Nefedov, I. S. and C. R. Simovski, "Giant radiation heat transfer through micron gaps," Phys. Rev. B, Vol. 84, 195459, 2011.
doi:10.1103/PhysRevB.84.195459

11. Maslovski, S. I., C. R. Simovski, and S. A. Tretyakov, "Equivalent circuit model of radiative heat transfer," Phys. Rev. B, Vol. 87, 155124, 2013.
doi:10.1103/PhysRevB.87.155124

12. Mirmoosa, M. S., F. Ruting, I. S. Nefedov, and C. R. Simovski, "Effective-medium model of wire metamaterials in the problems of radiative heat transfer," J. Appl. Phys., Vol. 115, 234905, 2014.
doi:10.1063/1.4883239

13. Simovski, C., S. Maslovski, I. Nefedov, and S. Tretyakov, "Optimization of radiative heat transfer in hyperbolic metamaterials for thermophotovoltaic applications," Opt. Express, Vol. 21, 14988-15013, 2013.
doi:10.1364/OE.21.014988

14. Guo, Y., C. L. Cortes, S. Molesky, and Z. Jacob, "Broadband super-Planckian thermal emission from hyperbolic metamaterials," Appl. Phys. Lett., Vol. 101, 131106, 2012.
doi:10.1063/1.4754616

15. Pendry, J. B., "Radiative exchange of heat between nanostructures," J. Phys.: Condens. Matter, Vol. 11, 6621, 1999.
doi:10.1088/0953-8984/11/35/301

16. Chang, J.-Y., Y. Yang, and L. Wang, "Tungsten nanowire-based hyperbolic metamaterial emitters for near-field thermophotovoltaic applications," Int. J. Heat Mass Tran., Vol. 87, 237, 2015.
doi:10.1016/j.ijheatmasstransfer.2015.03.087

17. Ilic, O., M. Jablan, J. D. Joannopoulos, I. Celanovic, and M. Soljačić, "Overcoming the black body limit in plasmonic and graphene near-field thermophotovoltaic systems," Opt. Express, Vol. 20, A366-A384, 2012.
doi:10.1364/OE.20.00A366

18. Mirmoosa, M. S. and C. Simovski, "Micron-gap thermophotovoltaic systems enhanced by nanowires," Photon. Nanostruct. Fundam. Appl., Vol. 13, 20-30, 2014.
doi:10.1016/j.photonics.2014.10.007

19. Bois, K. J., A. D. Benally, and R. Zoughi, "Multimode solution for the reflection properties of an open-ended rectangular waveguide radiating into a dielectric half-space: The forward and inverse problems," IEEE Trans. Instr. Meas., Vol. 48, 1131, 1999.
doi:10.1109/19.816127

20. Hanson, G. W., M. G. Silveirinha, P. Burghignoli, and A. B. Yakovlev, "Non-local susceptibility of the wire medium in the spatial domain considering material boundaries," New J. Phys., Vol. 15, 083018, 2013.
doi:10.1088/1367-2630/15/8/083018

21. Belov, P. A. and M. G. Silveirinha, "Resolution of subwavelength transmission devices formed by a wire medium," Phys. Rev. E, Vol. 73, 056607, 2006.
doi:10.1103/PhysRevE.73.056607

22. Radu, X., D. Garray, and C. Craeye, "Toward a wire medium endoscope for MRI imaging," Metamaterials, Vol. 3, 90-99, 2009.
doi:10.1016/j.metmat.2009.07.005

23. Serdyukov, A. N., I. V. Semchenko, S. A. Tretyakov, and A. Sihvola, Electromagnetics of Bi-anisotropic Materials: Theory and Application, Gordon and Breach Science Publishers, Amsterdam, 2001.